Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This research deals with the corrosion inhibition of mild steel in a highly corrosive aqueous HCl medium with a concentration of 0.5 M, using three different corrosion inhibitors: furan-2-carboxylic acid (), furan-2,5-dicarboxylic acid (), and furan-2,5-diyldimethanol (). Various electrochemical tests, such as potentiodynamic polarization (PP or Tafel curve) and electrochemical impedance spectroscopy, were systematically performed. The experimental results underscore the remarkable corrosion mitigating properties of inhibitors - on mild steel, showing inhibition efficiencies of 97.6, 99.5, and 95.8%, respectively, at a concentration of 5 × 10 M and temperature = 298 K. Notably, the inhibition efficiency of each inhibitor shows a positive correlation with its concentration. In addition, consistent results from all electrochemical methods confirm that act as mixed inhibitors. These findings remain robust across different experimental techniques, ensuring the reliability and comprehensiveness of the results. Theoretically, the inhibitors were optimized using the Density Functional Theory/B3LYP/6-311++G(d,p) method in gas and aqueous phase to evaluate their reactivity and stability. Among them, compound stands out for its enhanced reactivity and stability, highlighted by optimal E and E values. Negative electrostatic potential mapping suggests potential reaction centers, while Fukui functions reveal localized sites of reactivity, supported by a favorable electronic distribution and specific interactions with metal surfaces. Reduced density gradient analysis also confirms the suitability of this compound for noncovalent interactions, in agreement with experimental data.These theoretical results are in good agreement with experimental data, confirming the excellent performance of compound as a corrosion inhibitor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483910 | PMC |
http://dx.doi.org/10.1021/acsomega.4c06670 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!