Objectives: Many studies have confirmed that antibacterial agents can disrupt the human gut microbiota. In China, Tanreqing injection (TRQ) is a drug with antibacterial activity that is widely used in the treatment of respiratory infections. However, its specific influence on gut microbiota remains unclear. This study aimed to investigate the effect of TRQ on the gut microbiota of healthy volunteers.
Methods: Twelve healthy adults received 20 ml of TRQ intravenously daily for 7 consecutive days. At six timepoints (Pre, on D1, D3, D5, D7 and follow-up visit) fecal samples were collected and analyzed using 16S rRNA gene sequencing.
Results: Eleven people were included in the analysis finally. TRQ did not significantly alter gut microbiota diversity or richness (Shannon and Simpson and Chao1 index) in healthy people during the intervention. Gut microbial structure was stable (weighted and unweighted Unifrac). Using a machine learning method based on PLS-DA analysis, the separation trend on D7 at the genus level was found, returning to baseline two days after discontinuation. The abundance of major genus fluctuated on D7 compared with that prior to treatment, including an increase of unclassified_f_Enterobacteriaceae (13.0611%), a decrease of and (6.887%, 10.487%). Functional prediction analysis did not reveal any significant difference.
Conclusions: Our study showed short-term use of TRQ at conventional doses may not cause perturbations to the gut microbiota in healthy adults. This finding provides some useful information for the safe use of TRQ in the treatment of respiratory infections.
Clinical Trial Registration: https://www.medicalresearch.org.cn/, identifier MR-31-24-014367.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486765 | PMC |
http://dx.doi.org/10.3389/fcimb.2024.1428476 | DOI Listing |
Clin Nutr
December 2024
Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien, Taiwan. Electronic address:
Background: Trimethylamine N-oxide (TMAO) is a gut microbial metabolite derived from dietary l-carnitine and choline. High plasma TMAO levels are associated with cardiovascular disease and overall mortality, but little is known about the associations of TMAO and related metabolites with the risk of kidney function decline among patients with chronic kidney disease (CKD).
Methods: We prospectively followed 152 nondialysis patients with CKD stages 3-5 and measured plasma TMAO and related metabolites (trimethylamine [TMA], choline, carnitine, and γ-butyrobetaine) via liquid chromatography‒mass spectrometry.
J Vet Intern Med
December 2024
Veterinary Research Scholars Program (VRSP), University of Missouri College of Veterinary Medicine, Columbia, Missouri 65211, USA.
Background: Whereas restoration of fecal consistency after treatment with clioquinol for chronic diarrhea and free fecal water syndrome has been attributed to its antiprotozoal properties, actions of clioquinol on the colonic bacterial microbiota have not been investigated.
Objectives: Characterize the dynamics of fecal microbial diversity before, during, and after PO administration of clioquinol to healthy horses.
Study Design: Experimental prospective cohort study using a single horse group.
Mol Biol (Mosk)
December 2024
Pirogov All-Russia National Research Medical University, Moscow, 117997 Russia.
Obesity is associated with changes in the gut microbiota, as well as with increased permeability of the intestinal wall. In 130 non-obese volunteers, 57 patients with metabolically healthy obesity (MHO), and 76 patients with metabolically unhealthy obesity (MUHO), bacterial DNA was isolated from stool samples, and the 16S rRNA gene was sequenced. The metabolic profile of the microbiota predicted by PICRUSt2 (https://huttenhower.
View Article and Find Full Text PDFGut Microbes
December 2025
Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia.
The gut microbiota is a crucial link between diet and cardiovascular disease (CVD). Using fecal metaproteomics, a method that concurrently captures human gut and microbiome proteins, we determined the crosstalk between gut microbiome, diet, gut health, and CVD. Traditional CVD risk factors (age, BMI, sex, blood pressure) explained < 10% of the proteome variance.
View Article and Find Full Text PDFMicrobiome
December 2024
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!