Objective: Polysomnography (PSG) is unique in diagnosing sleep disorders, notably obstructive sleep apnea (OSA). Despite its advantages, manual PSG data grading is time-consuming and laborious. Thus, this research evaluated a deep learning-based automated scoring system for respiratory events in sleep-disordered breathing patients.

Methods: A total of 1000 case PSG data were enrolled to develop a deep learning algorithm. Of the 1000 data, 700 were distributed for training, 200 for validation, and 100 for testing. The respiratory events scoring deep learning model is composed of five sequential layers: an initial layer of perceptrons, followed by three consecutive layers of long short-term memory cells, and ultimately, an additional two layers of perceptrons.

Results: The PSG data of 100 patients (simple snoring, mild, moderate, and severe OSA; n = 25 in each group) were selected for validation and testing of the deep learning model. The algorithm demonstrated high sensitivity (95% CI: 98.06-98.51) and specificity (95% CI: 95.46-97.79) across all OSA severities in detecting apnea/hypopnea events, compared to manual PSG analysis. The deep learning model's area under the curve values for predicting OSA in apnea-hypopnea index ≥ 5, 15, and 30 groups were 0.9402, 0.9388, and 0.9442, respectively, showing no significant differences between each group.

Conclusion: The deep learning algorithm employed in our study showed high accuracy in identifying apnea/hypopnea episodes and assessing the severity of OSA, suggesting the potential for enhancing both the efficiency and accuracy of automated respiratory event scoring in PSG through advanced deep learning techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489947PMC
http://dx.doi.org/10.1177/20552076241291707DOI Listing

Publication Analysis

Top Keywords

deep learning
28
learning algorithm
12
psg data
12
deep
8
obstructive sleep
8
sleep apnea
8
manual psg
8
respiratory events
8
learning model
8
psg
6

Similar Publications

Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN's local feature extraction capability and LSTM's advantage in handling sequential data to optimize sensing accuracy and efficiency.

View Article and Find Full Text PDF

Accurate energy demand forecasting is critical for efficient energy management and planning. Recent advancements in computing power and the availability of large datasets have fueled the development of machine learning models. However, selecting the most appropriate features to enhance prediction accuracy and robustness remains a key challenge.

View Article and Find Full Text PDF

Dynamics and triggers of misinformation on vaccines.

PLoS One

January 2025

Centro Ricerche Enrico Fermi, Rome, Italy.

The Covid-19 pandemic has sparked renewed attention to the risks of online misinformation, emphasizing its impact on individuals' quality of life through the spread of health-related myths and misconceptions. In this study, we analyze 6 years (2016-2021) of Italian vaccine debate across diverse social media platforms (Facebook, Instagram, Twitter, YouTube), encompassing all major news sources-both questionable and reliable. We first use the symbolic transfer entropy analysis of news production time-series to dynamically determine which category of sources, questionable or reliable, causally drives the agenda on vaccines.

View Article and Find Full Text PDF

A framework for assessing reliability of observer annotations of aerial wildlife imagery, with insights for deep learning applications.

PLoS One

January 2025

Division of Biological Sciences, US Fish and Wildlife Southwest Regional Office, Albuquerque, New Mexico, United States of America.

There is growing interest in using deep learning models to automate wildlife detection in aerial imaging surveys to increase efficiency, but human-generated annotations remain necessary for model training. However, even skilled observers may diverge in interpreting aerial imagery of complex environments, which may result in downstream instability of models. In this study, we present a framework for assessing annotation reliability by calculating agreement metrics for individual observers against an aggregated set of annotations generated by clustering multiple observers' observations and selecting the mode classification.

View Article and Find Full Text PDF

Personalized recommendation system to handle skin cancer at early stage based on hybrid model.

Network

January 2025

Computer Science and Engineering, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India.

Skin cancer is one of the most prevalent and harmful forms of cancer, with early detection being crucial for successful treatment outcomes. However, current skin cancer detection methods often suffer from limitations such as reliance on manual inspection by clinicians, inconsistency in diagnostic accuracy, and a lack of personalized recommendations based on patient-specific data. In our work, we presented a Personalized Recommendation System to handle Skin Cancer at an early stage based on Hybrid Model (PRSSCHM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!