Green infrastructure (GI) offers a promising solution for mitigating the adverse effects of climate change, but evaluating its effectiveness necessitates a comprehensive understanding of how that has been quantified in the literature. This study aims to review the methods (monitoring, remote sensing, and modelling) employed to assess the effectiveness of GI in urban areas for three ecosystem services: heat mitigation (cooling of air temperature), thermal comfort control, and air quality mitigation. The objectives include evaluating the suitability of these approaches across diverse scales, categorising the essential parameters, and identifying the strengths and limitations inherent in each method. Through a literature review, 126 research papers were selected for detailed analysis. Modelling was the dominant method for heat mitigation (45.6 %), thermal comfort (70 %), and air pollution (51.9 %). The main inputs for assessing these three ecosystem services by GI were: meteorological parameters used in monitoring or modelling, morphological parameters (describing vegetation, surface, and built-up area conditions), specified parameters depending on the evaluated benefit such as landscape metrics (for heat mitigation), personal factors (for thermal comfort), pollutant measures (for air pollution), and other parameters (e.g. building and traffic heat emissions). The application scale of each method was dependent on the instruments, satellite data, and simulation tools utilised. Monitoring methods were employed in studies ranging from street-scale to neighbourhood-scale, remote sensing methods covered city-scale to regional-scale assessments, and modelling studies spanned from street-scale to regional-scale analyses. These diverse methods used to assess the GI benefits each have individual strengths and limitations which need to match the context and objectives of the study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489314 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e38446 | DOI Listing |
J Therm Biol
January 2025
Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China.
Maintaining an optimal indoor thermal environment is crucial for enhancing the welfare and productivity of livestock in intensive breeding farms. This paper investigated the application of a combined geothermal heat pump with a precision air supply (GHP-PAS) system for cooling dairy cows on a dairy farm. The effectiveness of the GHP-PAS system in mitigating heat stress in lactating dairy cattle, along with its energy performance and local cooling efficiency in the free stalls were evaluated.
View Article and Find Full Text PDFHeliyon
January 2025
Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary.
Heat stress has been proven to cause negative effects on livestock leading to lower productivity and economic value. Understanding how heat stress manifests within an animal's body is the first step in devising a heat stress mitigation strategy; transcriptomic studies are one of the methods used. Here, using a systematic literature review methodology, we examine the recent decade of transcriptomics' application to the study of livestock adaptation.
View Article and Find Full Text PDFOcean surface temperatures and the frequency and intensity of marine heatwaves are increasing worldwide. Understanding how marine organisms respond and adapt to heat pulses and the rapidly changing climate is crucial for predicting responses of valued species and ecosystems to global warming. Here, we carried out an in situ experiment to investigate sublethal responses to heat spikes of a functionally important intertidal bivalve, the venerid clam Austrovenus stutchburyi.
View Article and Find Full Text PDFIn addition to regulating the actin cytoskeleton, Cofilin also senses and responds to environmental stress. Cofilin can promote cell survival or death depending on context. Yet, many aspects of Cofilin's role in survival need clarification.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Seed and Plant Improvement Institute Agricultural Research, Education and Extension Organization (AREEO) Dezful Iran.
High temperatures can impede the growth and development of soybean plants, resulting in decreased yield and seed quality. Heat-induced damage can be mitigated by adjusting sowing date and selecting genotypes that are suitable for cultivation in hot climates. A 2-year (2017-2018) field experiment was conducted at Safiabad Agricultural and Natural Resources Research and Education Center, employing a split-plot design with three replications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!