A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pore Network Modeling of Intraparticle Transport Phenomena Accompanied by Chemical Reactions. | LitMetric

Pore Network Modeling of Intraparticle Transport Phenomena Accompanied by Chemical Reactions.

Ind Eng Chem Res

Multiphase Reactors Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Postbus, 5600 MB Eindhoven, The Netherlands.

Published: October 2024

In this work, a 3D pore network model (PNM) is introduced for modeling reaction-diffusion phenomena, with and without coupled heat transfer, in a spherical porous catalyst particle. The particle geometry is generated by packing thousands of microspheres inside a large sphere to represent the 3D geometry, porosity, and tortuosity of a spherical catalyst particle. A pore-network representation is extracted from this geometry, and a PNM for diffusion-reaction and heat conduction is constructed. This newly proposed particle-scale PNM allows for the application of realistic 3D nonuniform boundary conditions on the particle's surface, which is commonly encountered in slender packed-bed reactors. Concentration profiles inside the particle, and effectiveness of the reactions, is analyzed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488479PMC
http://dx.doi.org/10.1021/acs.iecr.4c01727DOI Listing

Publication Analysis

Top Keywords

pore network
8
catalyst particle
8
network modeling
4
modeling intraparticle
4
intraparticle transport
4
transport phenomena
4
phenomena accompanied
4
accompanied chemical
4
chemical reactions
4
reactions work
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!