Myocardial infarction together with subsequent heart failures are among the main reasons for death related to cardiovascular diseases (CVD). Restoring cardiac function and replacing scar tissue with healthy regenerated cardiomyocytes (CMs) is a hopeful therapy for heart failure. Human-induced pluripotent stem cell (hiPSC) derived CMs (hiPSC-CMs) offer the advantages of not having significant ethical issues and having negligible immunological rejection compared to other myocardial regeneration methods. hiPSCs can also produce an unlimited number of human CMs, another advantage they have compared with other cell sources for cardiac regeneration. Numerous researchers have focused their work on promoting the functional maturity of hiPSC-CMs, as well as finding out the precise regulatory mechanisms of each differentiation stage together with the economical and practical methods of acquisition and purification. However, the clinical applications of hiPSC-CMs in drug discovery and cardiac regeneration therapy have yet to be achieved. In this review, we present an overview of various methods for improving the differentiation efficiency of hiPSC-CMs and discuss the differences of electrophysiological characteristics between hiPSC-CMs and matured native CMs. We also introduce approaches for obtaining a large quantity of iPSC-CMs, which are needed to achieve biomanufacturing strategies for building biomimetic three-dimensional tissue constructs using combinations of biomaterials and advanced microfabrication techniques. Recent advances in specific iPSC technology-based drug screening platforms and regeneration therapies can suggest future directions for personalized medicine in biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488690 | PMC |
http://dx.doi.org/10.21037/mps-20-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!