Tumor-associated macrophages (TAMs) undergo metabolic reprogramming, encompassing glucose, amino acid, fatty acid metabolism, tricarboxylic acid (TCA) cycle, purine metabolism, and autophagy, within the tumor microenvironment (TME). The metabolic interdependencies between TAMs and tumor cells critically influence macrophage recruitment, differentiation, M2 polarization, and secretion of epithelial-mesenchymal transition (EMT)-related factors, thereby activating intratumoral EMT pathways and enhancing tumor cell invasion and metastasis. Tumor cell metabolic alterations, including hypoxia, metabolite secretion, aerobic metabolism, and autophagy, affect the TME's metabolic landscape, driving macrophage recruitment, differentiation, M2 polarization, and metabolic reprogramming, ultimately facilitating EMT, invasion, and metastasis. Additionally, macrophages can induce tumor cell EMT by reprogramming their aerobic glycolysis. Recent experimental and clinical studies have focused on the metabolic interactions between macrophages and tumor cells to control metastasis and inhibit tumor progression. This review highlights the regulatory role of TAM-tumor cell metabolic codependencies in EMT, offering valuable insights for TAM-targeted therapies in highly metastatic tumors. Modulating the metabolic interplay between tumors and TAMs represents a promising therapeutic strategy for treating patients with metastatic cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489172 | PMC |
http://dx.doi.org/10.7150/ijbs.99680 | DOI Listing |
Cancer Cell Int
December 2024
Department of Applied Chemistry, Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Taiwan.
Introduction: Chronic alcohol consumption and tobacco usage are major risk factors for esophageal squamous cell carcinoma (ESCC). Excessive tobacco and alcohol consumption lead to oxidative stress and the generation of reactive carbonyl species (RCS) which induce DNA damage and cell apoptosis. This phenomenon contributes to cell damage and carcinogenesis in various organs including ESCC.
View Article and Find Full Text PDFCell Signal
December 2024
Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China. Electronic address:
Nerves are often overlooked as key components of the tumor microenvironment. However, the molecular mechanisms underlying the reciprocal interactions between tumors and nerves remain largely unknown. In this study, we analyzed data from The Cancer Genome Atlas (TCGA) and identified a significant association between DKK1 expression and poor prognosis, as well as a correlation between DKK1 expression and myeloid-derived suppressor cell (MDSC) infiltration in head and neck squamous cell carcinoma (HNSCC) and pancreatic ductal adenocarcinoma (PDAC), two cancer types characterized by pronounced tumor-nerve interactions.
View Article and Find Full Text PDFNat Cancer
December 2024
Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
The cerebrospinal fluid (CSF) border accommodates diverse immune cells that permit peripheral cell immunosurveillance. However, the intricate interactions between CSF immune cells and infiltrating cancer cells remain poorly understood. Here we use fate mapping, longitudinal time-lapse imaging and multiomics technologies to investigate the precise origin, cellular crosstalk and molecular landscape of macrophages that contribute to leptomeningeal metastasis (LM) progression.
View Article and Find Full Text PDFEur J Med Res
December 2024
Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
The gut microbiota is a complex and dynamic ecosystem that plays a crucial role in human health and disease, including obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, inflammatory bowel disease, and cancer. Chronic inflammation is a common feature of these diseases and is closely related to angiogenesis (the process of forming new blood vessels), which is often dysregulated in pathological conditions. Inflammation potentially acts as a central mediator.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016, Granada, Spain.
MicroRNAs (miRNAs) have been recognised as potential biomarkers due to their specific expression patterns in different biological tissues and their changes in expression under pathological conditions. MicroRNA-122 (miR-122) is a vertebrate-specific miRNA that is predominantly expressed in the liver and plays an important role in liver metabolism and development. Dysregulation of miR-122 expression is associated with several liver-related diseases, including hepatocellular carcinoma and drug-induced liver injury (DILI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!