AI Article Synopsis

  • - Sickle cell disease (SCD) is caused by genetic defects affecting globin chains, and this study investigated the genes and pathways involved in its development.
  • - Researchers analyzed microarray data to identify differentially expressed genes (DEGs) and found 447 DEGs in SCD patients, with 345 up-regulated and 102 down-regulated genes.
  • - The study suggests that understanding these hub genes can aid in diagnosing high-risk SCD patients and developing tailored treatment strategies.

Article Abstract

Background: Sickle cell disease (SCD) is one of the hematological disorders characterized by a defect in the structure and function of globin chains. Hereditary factors play an important role in the pathogenesis of SCD. We aimed to investigate the genes and pathways related to the pathogenesis of SCD.

Methods: Microarray dataset was downloaded from the Gene Expression Omnibus (GEO) database. LIMMA package of R-software was used to detect UP and Down regulations between SCD and control subjects. Enrichment analysis and Protein-protein interaction (PPI) networks were performed using GeneCodis4 software and GeneMANIA database, respectively. PrognoScan database was used to evaluate the relationship between the hub genes and patients' survival.

Results: Overall, 447 DEGs were identified in SCD patients compared to control subjects. Out of 447 DEGs, 345 genes were up-regulated and 102 genes were down-regulated. Effective hub genes in SCD pathogenesis include and . In addition, hub genes had a high diagnostic value.

Conclusion: Evaluation of hub genes in SCD can be used as a diagnostic panel to detect high-risk patients. In addition, by identifying the UP and Down stream pathways, treatment strategies in the monitoring and treatment of patients can be designed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488559PMC

Publication Analysis

Top Keywords

hub genes
16
sickle cell
8
control subjects
8
447 degs
8
genes scd
8
genes
7
scd
6
evaluation genes
4
genes molecular
4
molecular pathways
4

Similar Publications

Background: Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and acts as a major contributor to cardiovascular diseases. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in AS, remain largely unexplored and are a subject of ongoing research.

View Article and Find Full Text PDF

Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.

View Article and Find Full Text PDF

Nutritional modification strategies have become pivotal in addressing heat stress in poultry farming. Probiotics are increasingly recognized as a sustainable additive by researchers. The enhancement of antioxidant capacity is critical for improving the overall health and productivity of broilers.

View Article and Find Full Text PDF

Cellular Senescence Genes as Cutting-Edge Signatures for Abdominal Aortic Aneurysm Diagnosis: Potential for Innovative Therapeutic Interventions.

J Cell Mol Med

January 2025

State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.

Abdominal aortic aneurysm (AAA) is the most prevalent dilated arterial aneurysm that poses a significant threat to older adults, but the molecular mechanisms linking senescence to AAA progression remain poorly understood. This study aims to identify cellular senescence-related genes (SRGs) implicated in AAA development and assess their potential as therapeutic targets. Four hundred and twenty-nine differentially expressed genes (DEGs) were identified from the GSE57691 training set, and 867 SRGs were obtained.

View Article and Find Full Text PDF

This study identifies microRNAs (miRNAs) with significant discriminatory power in distinguishing melanoma from nevus, notably hsa-miR-26a and hsa-miR-211, which have exhibited diagnostic potential with accuracy of 81% and 78% respectively. To enhance diagnostic accuracy, we integrated miRNAs into various machine-learning (ML) models. Incorporating miRNAs with AUC scores above 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!