A photoelectrochemical (PEC) sensor based on the poly-2,2,5,2-terthiophene (pTTh)/CuO heterojunction was constructed and applied for the detection of long non-coding RNA (lncRNA) TROJAN, a biomarker of triple-negative breast cancer. CuO and pTTh were electrodeposited and sequentially onto an indium tin oxide substrate. The bandgap of the resultant type II heterojunction was measured spectroscopically and the morphology was found to effectively separate photogenerated holes from electrons. A photocurrent density as high as 250 μA cm was attained, which is about three times higher than those of only pTTh or CuO. Owing to the close contact between pTTh and CuO, this PEC sensor is highly stable. Oligonucleotide probes for lncRNA can be cross-linked to carboxyl moieties of mercaptopropionic acid molecules adsorbed on pTTh/CuO. The desirable band structure and the high density of probe molecules collectively yielded a linear range of 0.1-10 000 pM. Our PEC sensor has been demonstrated to be amenable for detection of lncRNA markers with excellent analytical performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487473 | PMC |
http://dx.doi.org/10.1039/d4ra05238b | DOI Listing |
Anal Chem
January 2025
College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.
The early diagnosis of a disease relies on the reliable identification and quantitation of multiple core biomarkers in real-time point-of-care (POC) testing. To date, most of the multiplex photoelectrochemical (PEC) assays are inaccessible to home healthcare due to cumbersome steps, long testing time, and limited detection efficiency. The rapid and fast-response generation of independent photocurrent for multiple targets is still a great challenge.
View Article and Find Full Text PDFAnal Methods
January 2025
School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
A label-free photoelectrochemical (PEC) sensor for detecting theophylline (TP) was exploited based on electrodes modified with a nanocomposite of polydopamine nanospheres (PDSs) and gold nanoparticles (AuNPs). PDS particles were prepared by oxidative autopolymerization, and their reducibility was utilized in one step to reduce the gold nanoparticles . The AuNPs-PDS/ZnS PEC sensor was constructed by electrochemical deposition and drop coating.
View Article and Find Full Text PDFAnal Chem
January 2025
Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
This work utilized a combination of photocatalytic organic semiconductors and bacteria to create a photocatalytic organic semiconductor-bacterial biomixture system based on a bacteria imprinted polymers (OBBIPs-PEC) sensor, for the detection of with high sensitivity in "turn-on" mode at the single-cell level. This outstanding sensor arises from an integration of two different types of semiconductor materials to form heterojunctions. As well this sensor involves combining a semiconductor material with cationic side chains and an electron transport chain within a natural cellular environment, in which the cationic side chain of poly(fluorene--phenylene) organic semiconductor at 2-(4-mesyl-2-nitrobenzoyl)-1,3-cyclohexanedione (PFP-OC@MNC) demonstrated the ability to penetrate the cell membrane of and interact with specific binding sites through electrostatic interactions.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.
Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.
View Article and Find Full Text PDFTalanta
January 2025
Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
Fumonisin B1 (FB1) is a highly toxic fungal toxin that poses a serious threat to human health. Accordingly, realizing highly sensitive detection of FB1 is essential to safeguard people's health. In this study, a photoelectrochemical (PEC) aptamer sensor was successfully constructed with KPWO/CdS/CoS as the substrate material and with AgBiS as the aptamer marker.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!