In traditional TEMPO oxidation systems, the high cost of TEMPO catalysts has been a significant barrier to the industrialization of oxidized CNF. From an economic perspective, presenting the characteristics of various CNFs produced with the oxidation systems with reduced catalyst usage could facilitate the industrial application of CNF across a wide range of fields. In this study, it was demonstrated that reducing the amount of TEMPO catalyst used (from 0.1 to 0.05 mmol g) in a conventional oxidation system increased the carboxylate content by approximately 6.3%. Furthermore, the activation of hydroxyl amine TEMPO, which is generated after the oxidation reaction of cellulose, was enhanced by adjusting the dosage of the inexpensive oxidant NaClO, leading to a 20% improvement in carboxylate content. This suggests that controlling the amount of NaClO as an oxidant can be a key parameter in adjusting the dosage of TEMPO to achieve the targeted degree of surface substitution. Results from the dispersion stability, UV-transmittance, and morphological properties of TEMPO-oxidized CNF using microfluidizing treatment showed that high carboxylate content plays a crucial role in producing high-purity CNF suspensions, which are small, uniform, and free from microfibers. Additionally, by varying the number of mechanical treatments applied to the oxidized cellulose, various types of CNF suspensions with different mean widths were obtained. We expect that these findings offer meaningful insights to end-users seeking a breakthrough in the performance limitations of final applications using cellulose nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484588PMC
http://dx.doi.org/10.1039/d4ra04948aDOI Listing

Publication Analysis

Top Keywords

carboxylate content
12
tempo oxidation
8
oxidation system
8
oxidation systems
8
adjusting dosage
8
cnf suspensions
8
tempo
6
oxidation
5
cnf
5
catalyst oxidant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!