Transition-metal dichalcogenides (TMDs) are ideal systems for two-dimensional (2D) optoelectronic applications owing to their strong light-matter interaction and various band gap energies. New techniques to modify the crystallographic phase of TMDs have recently been discovered, allowing the creation of lateral heterostructures and the design of all-2D circuitry. Thus, far, the potential benefits of phase-engineered TMD devices for optoelectronic applications are still largely unexplored. The dominant mechanisms involved in photocurrent generation in these systems remain unclear, hindering further development of new all-2D optoelectronic devices. Here, we fabricate locally phase-engineered MoTe optoelectronic devices, creating a metal (1T') semiconductor (2H) lateral junction and unveil the main mechanisms at play for photocurrent generation. We find that the photocurrent originates from the 1T'-2H junction, with a maximum at the 2H MoTe side of the junction. This observation, together with the nonlinear IV-curve, indicates that the photovoltaic effect plays a major role in the photon-to-charge current conversion in these systems. Additionally, the 1T'-2H MoTe heterojunction device exhibits a fast optoelectronic response over a wavelength range of 700-1100 nm, with a rise and fall times of 113 and 110 μs, respectively, 2 orders of magnitude faster when compared to a directly contacted 2H MoTe device. These results show the potential of local phase-engineering for all-2D optoelectronic circuitry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487713 | PMC |
http://dx.doi.org/10.1021/acsphotonics.4c00896 | DOI Listing |
ACS Photonics
October 2024
Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
Transition-metal dichalcogenides (TMDs) are ideal systems for two-dimensional (2D) optoelectronic applications owing to their strong light-matter interaction and various band gap energies. New techniques to modify the crystallographic phase of TMDs have recently been discovered, allowing the creation of lateral heterostructures and the design of all-2D circuitry. Thus, far, the potential benefits of phase-engineered TMD devices for optoelectronic applications are still largely unexplored.
View Article and Find Full Text PDFTo unveil presently inscrutable details of the origins of our universe imprinted in the cosmic microwave background, future experiments in the millimeter and submillimeter range are focusing on the detection of fine features, which necessitate large and sensitive detector arrays to enable multichroic mapping of the sky. Currently, various approaches for coupling light to such detectors are under investigation, namely, coherently summed hierarchical arrays, platelet horns, and antenna-coupled planar lenslets. The last option offers increased bandwidth and a simpler fabrication while maintaining the desired optical performance.
View Article and Find Full Text PDFSci Rep
December 2022
Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.
The generation of tailored light fields with spatially controlled intensity and phase distribution is essential in many areas of science and application, while creating such patterns remotely has recently defined a key challenge. Here, we present a fiber-compatible concept for the remote generation of complex multi-foci three-dimensional intensity patterns with adjusted relative phases between individual foci. By extending the well-known Huygens principle, we demonstrate, in simulations and experiments, that our interference-based approach enables controlling of both intensity and phase of individual focal points in an array of spots distributed in all three spatial directions.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2022
Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211800, China.
With high theoretical specific capacity, the low-cost MoO is known to be a promising anode for lithium-ion batteries. However, low electronic conductivity and sluggish reaction kinetics have limited its ability for lithium ion storage. To improve this, the phase engineering approach is used to fabricate orthorhombic/monoclinic MoO (α/h-MoO) homojunctions.
View Article and Find Full Text PDFAdv Mater
May 2022
Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan.
Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS and MoSe .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!