Understanding the Potential of Light Absorption in Dots-in-Host Semiconductors.

ACS Photonics

Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, i3N/CENIMAT, Campus de Caparica, 2829-516 Caparica, Portugal.

Published: October 2024

The outstanding physical properties of dots-in-host (QD@Host) hetero semiconductors demand detailed methods to fundamentally understand the best routes to optimize their potentialities for different applications. In this work, a 4-band k.p-based method was developed for rock-salt quantum dots (QDs) that describes the complete optical properties of arbitrary QD@Host systems, trailblazing the way for the full optoelectronic analysis of quantum-structured solar cells. Starting with the determination of the QD bandgap and validation against well-established literature results, the electron transition rate is then computed and analyzed against the main system parameters. This is followed by a multiparameter optimization, considering intermediate band solar cells as a promising application, where the best QD configuration was determined, together with the corresponding QD@Host absorption spectrum, in view of attaining the theoretical maximum efficiency (∼50%) of this photovoltaic technology. The results show the creation of pronounced sub-bandgap absorption due to the electronic transitions from/to the quantum-confined states, which enables a much broader exploitation of the sunlight spectrum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487685PMC
http://dx.doi.org/10.1021/acsphotonics.4c00760DOI Listing

Publication Analysis

Top Keywords

solar cells
8
understanding potential
4
potential light
4
light absorption
4
absorption dots-in-host
4
dots-in-host semiconductors
4
semiconductors outstanding
4
outstanding physical
4
physical properties
4
properties dots-in-host
4

Similar Publications

Modification at ITO/NiO Interface with MoS Enables Hole Transport for Efficient and Stable Inverted Perovskite Solar Cells.

ChemSusChem

January 2025

Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China.

Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO and inefficient hole transport. In this study, we introduced MoS nanoparticles at the indium tin oxide (ITO) /NiO interface to enhance the ITO surface and optimize the deposition of NiO, resulting in increased conductivity linked to a ratio of Ni:Ni.

View Article and Find Full Text PDF

This paper explores optimization strategies for polymeric materials in organic solar cells (OSCs) with the focus on varying alkyl side chain, addition of fluorine atom, and thiophenated derivatives onto polymer. As such, it outlines the significance of renewable energy sources and the potential of photovoltaic technologies, particularly organic photovoltaics (OPVs). Objectives include factors affecting power conversion efficiency (PCE), open-circuit voltage (Voc), aggregation tendencies, and optoelectronic properties in OPVs.

View Article and Find Full Text PDF

The interfaces between the perovskite and charge-transporting layers typically exhibit high defect concentrations, which are the primary cause of open-circuit voltage loss. Passivating the interface between the perovskite and electron-transporting layer is particularly challenging due to the dissolution of surface treatment agents during the perovskite coating. In this study, a coherent FAPbICl buried interface was simultaneously formed during the preparation of FAPbI.

View Article and Find Full Text PDF

The efficient functioning of dye-sensitized solar cells (DSSCs) is governed by the interplay of three essential components: the semiconductor, the dye, and the electrolyte. While the impact of the electrolyte composition on the device's performance has been extensively studied in n-type DSSCs, much less is known about p-type-based devices. Here, we investigate the effect of potential-determining ions on the energetics and stability of dye-sensitized NiO surfaces by using electrochemical, ab initio molecular dynamics simulations, and ab initio electronic structure calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!