The oligotrophic tropical western Pacific region is characterized by a high density of seamounts, with the Kyushu-Palau Ridge (KPR) being the longest seamount chain here. Effective spatial management plans for seamount ecosystems necessitate an understanding of distribution patterns and key environmental factors influencing benthic communities. However, knowledge regarding deep-sea biodiversity patterns over intricate topography remains limited. In this study, we investigated a seamount with a water depth of 522 m at the summit located in the southern section of KPR. Survey transects were conducted from 522 m to 4059 m. By analyzing video-recorded data obtained by a human-occupied vehicle (HOV) during dives and environmental variables derived from bathymetry, distinct assemblages were identified through noise clustering. α- and β-diversity patterns within the seamount megabenthic community were analyzed across the depth gradient, along with investigation of their environmental drivers. A total of 10,596 megafauna individuals were documented, categorized into 88 morphospecies and statistically separated into six distinct community clusters using noise clustering analysis. Species abundance and richness were highest within the 700-800 m water depth range, declining notably beyond 2100 m, indicating a critical threshold for habitat classification in this region. The β-diversity of megabenthic communities was high (0.836). Although β-diversity patterns along the depth gradient were mostly dominated by differences in species richness, the contribution of species replacement increased with depth, becoming dominant at depths greater than 3000 m. Depth emerged as the primary driver of spatial variation in community structure, while near-bottom current velocity, topographic parameters (bathymetric position index, slope), and substrate type also influenced the formation of microhabitats. The study highlights the depth gradients, thresholds, and other intricate environmental factors shaping the spatial heterogeneity of these communities. It provides valuable insights for the future development of effective survey and conservation strategies for benthic biodiversity on the KPR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486664 | PMC |
http://dx.doi.org/10.1002/ece3.70427 | DOI Listing |
J Environ Manage
December 2024
Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China. Electronic address:
Global climate change impacts marine ecosystems differently across oceanic regions and depths. Thus, understanding how widespread key species adapt globally and locally to multidimensional climate change is crucial for targeted conservation. This study focuses on the cosmopolitan cold-water coral (CWC) Desmophyllum dianthus using ecological niche models (ENMs) to explore climate adaptation and conservation strategies.
View Article and Find Full Text PDFZootaxa
May 2024
The Nature Conservancy; Quito; Ecuador.
A new species of the Aulopidae is described from the waters of southern Ecuador and northern Peru. Aulopus chirichignoae sp. nov.
View Article and Find Full Text PDFZootaxa
April 2024
Joint Stock Company Yuzhmorgeologiya; Federal Agency for State Property Management; Krymskaya Street 20; Gelendzhik; 353461; Russia.
This work describes Bryozoa of the order Cheilostomata associated with polymetallic nodules collected by box-coring in the eastern part of the Russian exploration area of the Clarion-Clipperton Fracture Zone (CCFZ or CCZ) under contract to Yuzhmorgeologiya. Study of 569 cheilostome specimens from 4510-5280 m depth yielded 32 species (22 new) in 20 genera (3 new) and 14 families (1 new). For six species, the nomenclature was left open (genus only) owing to the paucity of defining characters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!