AI Article Synopsis

  • Cardiac T2 mapping is a diagnostic tool that faces challenges with spatial resolution, which may limit its effectiveness in detecting small heart lesions.
  • This study presents a new cardiac T2 mapping technique using the SCC-LLRT algorithm, validated by tests on both phantoms and human participants, showing improved spatial resolution without increased acquisition time.
  • Results indicated that the new method significantly reduces artifacts and noise while enhancing overall image quality compared to traditional imaging techniques, leading to better-defined images of the myocardium.

Article Abstract

Background: Cardiac T2 mapping is a valuable tool for diagnosing myocardial edema, inflammation, and infiltration, yet its spatial resolution is limited by the single-shot balanced steady-state free precession acquisition and duration of the cardiac quiescent period, which may reduce sensitivity in detecting focal lesions in the myocardium. To improve spatial resolution without extending the acquisition window, this study examined a novel accelerated Cartesian cardiac T2 mapping technique.

Methods: We introduce a novel improved-resolution cardiac T2 mapping approach leveraging a calibrationless space-contrast-coil locally low-rank tensor (SCC-LLRT)-constrained reconstruction algorithm in conjunction with Cartesian undersampling trajectory. The method was validated with phantom imaging and imaging that involved 13 healthy participants and 20 patients. The SCC-LLRT algorithm was compared with a conventional locally low-rank (LLR)-constrained algorithm and a nonlinear inversion (NLINV) reconstruction algorithm. The improved-resolution T2 mapping (1.4 mm × 1.4 mm) was compared globally and regionally with the regular-resolution T2 mapping (2.3 mm × 1.9 mm) according to the 16-segment model of the American Heart Association. The agreement between the improved-resolution and regular-resolution T2 mappings was evaluated by linear regression and Bland-Altman analyses. Image quality was scored by two experienced reviewers on a five-point scale (1, worst; 5, best).

Results: In healthy participants, SCC-LLRT significantly reduced artifacts (4.50±0.39) compared with LLR (2.31±0.60; P<0.001) and NLINV (3.65±0.56; P<0.01), suppressed noise (4.12±0.35) compared with NLINV (2.65±0.50; P<0.001), and improved the overall image quality (4.38±0.40) compared with LLR (2.54±0.41; P<0.001) and NLINV (3.04±0.50; P<0.001). Compared with the regular-resolution T2 mapping, the proposed method significantly improved the sharpness of myocardial boundaries (4.46±0.60 3.04±0.50; P<0.001) and the conspicuity of papillary muscles and fine structures (4.46±0.63 2.65±0.30; P<0.001). Myocardial T2 values obtained with the proposed method correlated significantly with those from regular-resolution T2 mapping in both healthy participants (r=0.79; P<0.01) and patients (r=0.94; P<0.001).

Conclusions: The proposed SCC-LLRT-constrained reconstruction algorithm in conjunction with Cartesian undersampling pattern achieved improved-resolution cardiac T2 mapping of comparable accuracy, precision, and scan-rescan reproducibility compared with the regular-resolution T2 mapping. The higher resolution improved the sharpness of myocardial borders and the conspicuity of image fine details, which may increase diagnostic confidence in cardiac T2 mapping for detecting small lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485370PMC
http://dx.doi.org/10.21037/qims-24-740DOI Listing

Publication Analysis

Top Keywords

cardiac mapping
16
locally low-rank
12
accelerated cartesian
8
cartesian cardiac
8
low-rank tensor
8
spatial resolution
8
reconstruction algorithm
8
healthy participants
8
mapping
6
cardiac
5

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Jackson Laboratory, Bar Harbor, ME, USA.

Background: Alzheimer's disease (AD) and AD-related dementias (ADRD) are modulated by gene-environment (GxE) interactions across the lifespan. Variants of specific genes increase AD risk and synergize with lifetime exposure to environmental toxicants ("exposome"), including neurotoxic metals (lead, Pb; cadmium, Cd) and metalloid (As). These metal/metalloid toxicants readily enter the body (e.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA.

Background: Consortium-wide studies of volumetric brain imaging measures with single-nucleotide polymorphisms (SNPs) have revealed numerous disease-risk SNPs and emphasized the significance of brain imaging phenotypes as preclinical markers (endophenotypes) for Alzheimer's disease (AD). Nevertheless, the bulk of these risk variants are in genomic regions that govern multiple genes, posing major challenges in fine-mapping strategies. Evolutionarily conserved transposable elements are master regulators of gene expression, and by studying these endogenous gene regulatory units in relation to AD endophenotypes, we aimed to better identify the disease-causal gene.

View Article and Find Full Text PDF

We presented a case of a 49-year-old presenting with atypical chest pain and hypertrophic phenotype cardiomyopathy without coronary artery disease. At cardiac magnetic resonance (CMR), the left ventricle was of normal volumes and preserved global ejection fraction with an asymmetric wall hypertrophy. The evaluation of native myocardial T1 has been calculated at an average global value of 924 ms, compatible with hypertrophic phenotype cardiomyopathy with reduced native T1 values as observed in Anderson-Fabry disease.

View Article and Find Full Text PDF

Reinforcing treatment and evaluation workflow of stereotactic ablative body radiotherapy for refractory ventricular tachycardia.

Radiat Oncol J

December 2024

Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.

Purpose: Cardiac radioablation is a novel, non-invasive treatment for ventricular tachycardia (VT), involving a single fractional stereotactic ablative body radiotherapy (SABR) session with a prescribed dose of 25 Gy. This complex procedure requires a detailed workflow and stringent dose constraints compared to conventional radiation therapy. This study aims to establish a consistent institutional workflow for single-fraction cardiac VT-SABR, emphasizing robust plan evaluation and quality assurance.

View Article and Find Full Text PDF

In contrast to adult mammalian hearts, the adult zebrafish heart efficiently replaces cardiomyocytes lost after injury. Here we reveal shared and species-specific injury response pathways and a correlation between Hmga1, an architectural non-histone protein, and regenerative capacity, as Hmga1 is required and sufficient to induce cardiomyocyte proliferation and required for heart regeneration. In addition, Hmga1 was shown to reactivate developmentally silenced genes, likely through modulation of H3K27me3 levels, poising them for a pro-regenerative gene program.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!