Background: Breast cancer is one of the most common malignancies in women worldwide, and early and accurate diagnosis is crucial for improving treatment outcomes. Conventional ultrasound (CUS) is a widely used screening method for breast cancer; however, the subjective nature of interpreting the results can lead to diagnostic errors. The current study sought to estimate the effectiveness of using a GoogLeNet deep-learning convolutional neural network (CNN) model to identify benign and malignant breast masses based on CUS.
Methods: A literature search was conducted of the Embase, PubMed, Web of Science, Wanfang, China National Knowledge Infrastructure (CNKI), and other databases to retrieve studies related to GoogLeNet deep-learning CUS-based models published before July 15, 2023. The diagnostic performance of the GoogLeNet models was evaluated using several metrics, including pooled sensitivity (PSEN), pooled specificity (PSPE), the positive likelihood ratio (PLR), the negative likelihood ratio (NLR), the diagnostic odds ratio (DOR), and the area under the curve (AUC). The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies Scale (QUADAS). The eligibility of the included literature were independently searched and assessed by two authors.
Results: All of the 12 studies that used pathological findings as the gold standard were included in the meta-analysis. The overall average estimation of sensitivity and specificity was 0.85 [95% confidence interval (CI): 0.80-0.89] and 0.86 (95% CI: 0.78-0.92), respectively. The PLR and NLR were 6.2 (95% CI: 3.9-9.9) and 0.17 (95% CI: 0.12-0.23), respectively. The DOR was 37.06 (95% CI: 20.78-66.10). The AUC was 0.92 (95% CI: 0.89-0.94). No obvious publication bias was detected.
Conclusions: The GoogLeNet deep-learning model, which uses a CNN, achieved good diagnostic results in distinguishing between benign and malignant breast masses in CUS-based images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485374 | PMC |
http://dx.doi.org/10.21037/qims-24-679 | DOI Listing |
Anal Methods
January 2025
Jiangsu Beier Machinery Co. Ltd, Jiangsu, 215600, China.
Plastic waste management is one of the key issues in global environmental protection. Integrating spectroscopy acquisition devices with deep learning algorithms has emerged as an effective method for rapid plastic classification. However, the challenges in collecting plastic samples and spectroscopy data have resulted in a limited number of data samples and an incomplete comparison of relevant classification algorithms.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur, India.
Biopsy is considered the gold standard for diagnosing brain tumors, but its invasive nature can pose risks to patients. Additionally, tissue analysis can be cumbersome and inconsistent among observers. This research aims to develop a cost-effective, non-invasive, MRI-based computer-aided diagnosis tool that can reliably, accurately and swiftly identify brain tumor grades.
View Article and Find Full Text PDFFront Digit Health
December 2024
Computer Science Department, Carlos III University of Madrid, Getafe, Spain.
Sci Rep
December 2024
Department of Computer, Jing-De-Zhen Ceramic University, Jing-De-Zhen, 333403, China.
Considering the substantial inaccuracies inherent in the traditional manual identification of ceramic categories and the issues associated with analyzing ceramics based on chemical or spectral features, which may lead to the destruction of ceramics, this paper introduces a novel provenance classification of archaeological ceramics which relies on microscopic features and an ensemble deep learning model, overcoming the time consuming and require costly equipment limitations of current standard methods, and without compromising the structural integrity and artistic value of ceramics. The proposed model includes the following: the construction of a dataset for ancient ceramic microscopic images, image preprocessing methods based on Gamma correction and CLAHE equalization algorithms, extraction of image features based on three deep learning architectures-VGG-16, Inception-v3 and GoogLeNet, and optimal fusion. This latter is based on stochastic gradient descent (SGD) algorithm, which allows optimal fitting of the fusion model parameters by freezing and unfreezing model layers.
View Article and Find Full Text PDFOral Radiol
December 2024
Department of Oral, Dental and Maxillofacial Radiology, Faculty of Dentistry, Ataturk University, Erzurum, 25240, Turkey.
Objective: The aim of this study is to determine the contact relationship and position of impacted mandibular third molar teeth (IMM) with the mandibular canal (MC) in panoramic radiography (PR) images using deep learning (DL) models trained with the help of cone beam computed tomography (CBCT) and DL to compare the performances of the architectures.
Methods: In this study, a total of 546 IMMs from 290 patients with CBCT and PR images were included. The performances of SqueezeNet, GoogLeNet, and Inception-v3 architectures in solving four problems on two different regions of interest (RoI) were evaluated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!