Background: Breast cancer is one of the most common malignancies in women worldwide, and early and accurate diagnosis is crucial for improving treatment outcomes. Conventional ultrasound (CUS) is a widely used screening method for breast cancer; however, the subjective nature of interpreting the results can lead to diagnostic errors. The current study sought to estimate the effectiveness of using a GoogLeNet deep-learning convolutional neural network (CNN) model to identify benign and malignant breast masses based on CUS.

Methods: A literature search was conducted of the Embase, PubMed, Web of Science, Wanfang, China National Knowledge Infrastructure (CNKI), and other databases to retrieve studies related to GoogLeNet deep-learning CUS-based models published before July 15, 2023. The diagnostic performance of the GoogLeNet models was evaluated using several metrics, including pooled sensitivity (PSEN), pooled specificity (PSPE), the positive likelihood ratio (PLR), the negative likelihood ratio (NLR), the diagnostic odds ratio (DOR), and the area under the curve (AUC). The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies Scale (QUADAS). The eligibility of the included literature were independently searched and assessed by two authors.

Results: All of the 12 studies that used pathological findings as the gold standard were included in the meta-analysis. The overall average estimation of sensitivity and specificity was 0.85 [95% confidence interval (CI): 0.80-0.89] and 0.86 (95% CI: 0.78-0.92), respectively. The PLR and NLR were 6.2 (95% CI: 3.9-9.9) and 0.17 (95% CI: 0.12-0.23), respectively. The DOR was 37.06 (95% CI: 20.78-66.10). The AUC was 0.92 (95% CI: 0.89-0.94). No obvious publication bias was detected.

Conclusions: The GoogLeNet deep-learning model, which uses a CNN, achieved good diagnostic results in distinguishing between benign and malignant breast masses in CUS-based images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485374PMC
http://dx.doi.org/10.21037/qims-24-679DOI Listing

Publication Analysis

Top Keywords

googlenet deep-learning
16
benign malignant
12
malignant breast
12
breast masses
12
deep-learning model
8
masses based
8
conventional ultrasound
8
breast cancer
8
likelihood ratio
8
googlenet
5

Similar Publications

Plastic waste management is one of the key issues in global environmental protection. Integrating spectroscopy acquisition devices with deep learning algorithms has emerged as an effective method for rapid plastic classification. However, the challenges in collecting plastic samples and spectroscopy data have resulted in a limited number of data samples and an incomplete comparison of relevant classification algorithms.

View Article and Find Full Text PDF

Biopsy is considered the gold standard for diagnosing brain tumors, but its invasive nature can pose risks to patients. Additionally, tissue analysis can be cumbersome and inconsistent among observers. This research aims to develop a cost-effective, non-invasive, MRI-based computer-aided diagnosis tool that can reliably, accurately and swiftly identify brain tumor grades.

View Article and Find Full Text PDF
Article Synopsis
  • Identity verification is increasingly important for online services and security, with biometric methods like ECG signals standing out for their accuracy and resistance to falsification.
  • The study introduces a new identity verification framework using ECG signals, which involves cleaning the data of noise and transforming it into images for deep learning analysis using techniques like the Wigner-Ville distribution and CNNs (GoogleNet architecture).
  • The proposed model achieved high accuracy rates of 99.3% and 99.004% on benchmark datasets, demonstrating its effectiveness compared to other biometric methods.
View Article and Find Full Text PDF

Considering the substantial inaccuracies inherent in the traditional manual identification of ceramic categories and the issues associated with analyzing ceramics based on chemical or spectral features, which may lead to the destruction of ceramics, this paper introduces a novel provenance classification of archaeological ceramics which relies on microscopic features and an ensemble deep learning model, overcoming the time consuming and require costly equipment limitations of current standard methods, and without compromising the structural integrity and artistic value of ceramics. The proposed model includes the following: the construction of a dataset for ancient ceramic microscopic images, image preprocessing methods based on Gamma correction and CLAHE equalization algorithms, extraction of image features based on three deep learning architectures-VGG-16, Inception-v3 and GoogLeNet, and optimal fusion. This latter is based on stochastic gradient descent (SGD) algorithm, which allows optimal fitting of the fusion model parameters by freezing and unfreezing model layers.

View Article and Find Full Text PDF

Objective: The aim of this study is to determine the contact relationship and position of impacted mandibular third molar teeth (IMM) with the mandibular canal (MC) in panoramic radiography (PR) images using deep learning (DL) models trained with the help of cone beam computed tomography (CBCT) and DL to compare the performances of the architectures.

Methods: In this study, a total of 546 IMMs from 290 patients with CBCT and PR images were included. The performances of SqueezeNet, GoogLeNet, and Inception-v3 architectures in solving four problems on two different regions of interest (RoI) were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!