Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrification of water in clouds leads to fascinating redox reactions on Earth. However, little is known about cloud electrochemistry, except for lightning, a natural hazard that is nearly impossible to harness. We report a controllable electrochemistry that can be enabled in microclouds by fast phase switching of water between the microdroplet, vapor, and bulk phase. Due to the size-dependent charge transfer between droplets during atomization, this process generates an alternating voltage arising from the self-electrification and discharging of microdroplets, vapor, and bulk phase by electron and ion transfer. We show that the microclouds with alternating voltage cause 1,2-dichloroethane (ClHC-CHCl) to be converted to vinyl chloride (HC═CHCl) at ∼80% selectivity. These findings highlight the importance of controlled cloud electrochemistry in accelerating the removal of volatile organic compounds and treating contaminated water. We suggest that this work opens an avenue for harnessing cloud electrochemistry to solve challenging chemoselectivity problems in aqueous reactions of environmental and industrial importance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c11224 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669384 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!