A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Van der Waals Heterojunction Based Self-Powered Biomimetic Dual-Mode Sensor for Precise Object Identification. | LitMetric

The design and fabrication of materials that can concurrently respond to light and gas within the dual-modal recognition domain present a significant challenge due to contradictory structural requirements. This innovative strategy introduces a type-I heterojunction, combining the properties of SbTe and WSe nanosheets, to overcome these obstacles. The heterojunction is prepared through a precise stacking approach to create a single-side barrier on the valence band and a near-zero offset on the conduction band. The resulting SbTe/WSe heterojunction demonstrates unparalleled performance, showcasing the best integrated photoelectric and gas sensing performance in a single device to date. Based on the above features, the heterojunction successfully integrates visual and olfactory sensing performance, achieving the first biomimetic visual-olfactory dual-mode recognition in a single device. This simulation increased the accuracy of distinguishing electric and fuel-powered cars from ≈50% to ≈96%. This work introduces a novel approach to creating efficient, self-powered sensing materials, paving the way for next-generation biomimetic dual-model devices with broad applications in environmental protection, medical care, and other fields.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202411121DOI Listing

Publication Analysis

Top Keywords

sensing performance
8
single device
8
heterojunction
5
van der
4
der waals
4
waals heterojunction
4
heterojunction based
4
based self-powered
4
self-powered biomimetic
4
biomimetic dual-mode
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!