Transcriptome-wide RNA m6A methylation profiles in an endemic osteoarthropathy, Kashin-Beck disease.

J Cell Mol Med

School of Public Health, Health Science Center, Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, People's Republic of China.

Published: October 2024

Kashin-Beck disease (KBD) is a chronic degenerative, disabling disease of the bones and joints and its exact aetiology and pathogenesis remain uncertain. This study is to investigate the role of m6A modification in the pathogenesis of KBD. Combined analysis of m6A MeRIP-Seq and RNA-Seq were used to analyse human peripheral blood samples from three KBD patients and three normal controls (NC). Bioinformatic methods were used to analyse m6A-modified differential genes and RT-qPCR was performed to validate the mRNA expression of several KBD-related genes. The results indicated that the total of 16,811 genes were modified by m6A in KBD group, of which 4882 genes were differential genes. A large number of differential genes were associated with regulation of transcription, signal transduction and protein binding. KEGG analysis showed that m6A-enriched genes participated the pathways of Vitamin B6 metabolism, endocytosis and Rap 1 signalling pathway. There was a positive association between m6A abundance and levels of gene expression, that there were 6 hypermethylated and upregulated genes (hyper-up), 23 hypomethylated and downregulated genes (hypo-down) in KBD group compared with NC. In addition, the mRNA expression of levels of MMP8, IL32 and GPX1 were verified and the protein-protein interaction networks of these key factors were constructed. Our study showed that m6A modifications may play a vital role in modulating gene expression, which represents a new clue to reveal the pathogenesis of KBD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491295PMC
http://dx.doi.org/10.1111/jcmm.70047DOI Listing

Publication Analysis

Top Keywords

differential genes
12
genes
9
kashin-beck disease
8
pathogenesis kbd
8
mrna expression
8
kbd group
8
gene expression
8
m6a
6
kbd
6
transcriptome-wide rna
4

Similar Publications

The MADS-box protein SHATTERPROOF 2 regulates TAA1 expression in the gynoecium valve margins.

Plant Reprod

January 2025

Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.

SHATTERPROOF 2 regulates TAA1 expression for the establishment of the gynoecium valve margins. Gynoecium development and patterning play a crucial role in determining the ultimate structure of the fruit and, thus, seed production. The MADS-box transcription factor SHATTERPROOF 2 (SHP2) contributes to valve margin differentiation and plays a major role in fruit dehiscence and seed dispersal.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis and Parkinson's Disease: Brain Tissue Transcriptome Analysis Reveals Interactions.

Mol Neurobiol

January 2025

Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.

This study utilises amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) human brain samples from the GEO database and employs differential expression gene (DEG) analysis to identify genes that are pivotal in both neurodegenerative diseases. Through in depth GO and KEGG enrichment analyses, we elucidated the biological functions and potential pathways associated with these DEGs. Furthermore, by constructing protein‒protein interaction networks, we highlight the significance of shared DEGs in both cellular physiology and disease contexts.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) with the two predominant endophenotypes-Crohn's disease (CD) and ulcerative colitis (UC)-represents a group of chronic gastrointestinal inflammatory conditions. Since most genetic associations with IBD are often limited to independent subtypes, we reported a genome-wide association study (GWAS) cross-trait analysis combined with CD and UC to enhance statistical power. Initially, we detected 256 association signals at 54 genomic susceptibility loci and further characterized the functionality of variants within these regions.

View Article and Find Full Text PDF

Purpose: Fuchs endothelial corneal dystrophy (FECD) displays a higher incidence in females than in males, yet the underlying mechanism remains unclear. This study aimed to elucidate sex-dependent differential gene expressions in corneal endothelial cells (CECs) from healthy non-FECD individuals and from patients with FECD.

Methods: RNA-Seq data from CECs of non-FECD subjects (3 males, 4 females) and FECD subjects (5 males, 5 females) were analyzed to identify differentially expressed genes (DEGs) between the sexes.

View Article and Find Full Text PDF

Alternative splicing is essential for the generation of various protein isoforms that are involved in cell differentiation and tissue development. In addition to internal coding exons, alternative splicing affects the exons with translation initiation codons; however, little is known about these exons. Here, we performed a systematic classification of human alternative exons using coding information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!