Post-marketing surveillance refers to the process of monitoring the safety of drugs once they reach the market, after the successful completion of clinical trials. In this work, we investigate a computational approach using data mining tools to detect safety signals from post-market safety databases, or in other words, to identify adverse events (AEs) with disproportionately high reporting rates compared to other AEs, associated with a particular drug or a drug class. Essentially, we view this as a problem of cluster analysis-based anomaly detection on post-market safety data, where the goal is to 'unsupervisedly' detect the anomalous or the signal AEs. Our findings demonstrate the potential of using a clustering ensemble method to detect drug safety signals. It employs multiple clustering or anomaly detection algorithms, followed by a performance comparison of the candidate algorithms based on a collection of appropriate measures of goodness of clustering results. The method is general enough to include any number of clustering or anomaly detection algorithms and goodness measures, and performs better than any of the candidate algorithms in identifying the signal AEs. Extensive simulation studies illustrate that the ensemble method detects the AE signals from synthetic post-market safety datasets pretty accurately across the different scenarios explored. Based on the cases reported to the FDA Adverse Event Reporting System (FAERS) between 2013 and 2022, we further demonstrate that the ensemble method successfully identifies and confirms most of the adverse events that are known to occur most frequently in reaction to antiepileptic drugs and -lactam antibiotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s43441-024-00705-7 | DOI Listing |
Commun Med (Lond)
December 2024
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
Background: Wide QRS complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) remains challenging despite numerous 12-lead electrocardiogram (ECG) criteria and algorithms. Automated solutions leveraging computerized ECG interpretation (CEI) measurements and engineered features offer practical ways to improve diagnostic accuracy. We propose automated algorithms based on (i) WCT QRS polarity direction (WCT Polarity Code [WCT-PC]) and (ii) QRS polarity shifts between WCT and baseline ECGs (QRS Polarity Shift [QRS-PS]).
View Article and Find Full Text PDFSci Rep
December 2024
Public Health and community medicine Department, Theodor Bilharz Research Institute, Helwan University, Cairo, Egypt.
Infectious diseases significantly impact both public health and economic stability, underscoring the critical need for precise outbreak predictions to effictively mitigate their impact. This study applies advanced machine learning techniques to forecast outbreaks of Dengue, Chikungunya, and Zika, utilizing a comprehensive dataset comprising climate and socioeconomic data. Spanning the years 2007 to 2017, the dataset includes 1716 instances characterized by 27 distinct features.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Biomedical Engineering, Meybod University, Meybod, Iran.
Purpose: A debilitating and poorly understood symptom of Parkinson's disease (PD) is freezing of gait (FoG), which increases the risk of falling. Clinical evaluations of FoG, relying on patients' subjective reports and manual examinations by specialists, are unreliable, and most detection methods are influenced by subject-specific factors.
Method: To address this, we developed a novel algorithm for detecting FoG events based on movement signals.
Maturitas
December 2024
Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Universiteitsweg 99, Utrecht 3508 TB, the Netherlands.
Objective: Given that Parkinson's disease is a progressive disorder, with symptoms that worsen over time, our goal is to enhance the diagnosis of Parkinson's disease by utilizing machine learning techniques and microbiome analysis. The primary objective is to identify specific microbiome signatures that can reproducibly differentiate patients with Parkinson's disease from healthy controls.
Methods: We used four Parkinson-related datasets from the NCBI repository, focusing on stool samples.
PLoS One
December 2024
Future Technology Research Center, National Yunlin University of Science and Technology, Yunlin, Taiwan.
This paper seeks to enhance the performance of Mel Frequency Cepstral Coefficients (MFCCs) for detecting abnormal heart sounds. Heart sounds are first pre-processed to remove noise and then segmented into S1, systole, S2, and diastole intervals, with thirteen MFCCs estimated from each segment, yielding 52 MFCCs per beat. Finally, MFCCs are used for heart sound classification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!