Natural medicines (NMs) are crucial for treating human diseases. Efficiently characterizing their bioactive components in vivo has been a key focus and challenge in NM research. High-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) systems offer high sensitivity, resolution, and precision for conducting in vivo analysis of NMs. However, due to the complexity of NMs, conventional data acquisition, mining, and processing techniques often fail to meet the practical needs of in vivo NM analysis. Over the past two decades, intelligent spectral data-processing techniques based on various principles and algorithms have been developed and applied for in vivo NM analysis. Consequently, improvements have been achieved in the overall analytical performance by relying on these techniques without the need to change the instrument hardware. These improvements include enhanced instrument analysis sensitivity, expanded compound analysis coverage, intelligent identification, and characterization of nontargeted in vivo compounds, providing powerful technical means for studying the in vivo metabolism of NMs and screening for pharmacologically active components. This review summarizes the research progress on in vivo analysis strategies for NMs using intelligent MS data processing techniques reported over the past two decades. It discusses differences in compound structures, variations among biological samples, and the application of artificial intelligence (AI) neural network algorithms. Additionally, the review offers insights into the potential of in vivo tracking of NMs, including the screening of bioactive components and the identification of pharmacokinetic markers. The aim is to provide a reference for the integration and development of new technologies and strategies for future in vivo analysis of NMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1875-5364(24)60687-4 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
A total of 38 new benzohydrazide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized based on the active subunit combination approach and tested in detail for their inhibition activities against eight agricultural phytopathogenic fungi. The bioassay results indicated that many of the synthesized compounds exhibited extraordinary fungicidal activities in vitro against the tested fungi. For example, compounds , , , and had EC (half-maximal effective concentration) values of 0.
View Article and Find Full Text PDFAnalyst
January 2025
Physical to Life Sciences Research Hub, Technological University Dublin, City Campus, Aungier Street, Dublin 2, D02 HW71, Ireland.
Carotenoids are known for their antioxidant and vision protection roles, with dietary supplements often promoted for eye health. An initial trial, the European Nutrition in Glaucoma Management (ENIGMA), assessed macular pigment optical density (MPOD) and other ocular parameters before and after supplementing glaucoma patients with macular pigment (MP) carotenoids. The trial confirmed significant improvements in clinical ocular health.
View Article and Find Full Text PDFFront Vet Sci
January 2025
College of Animal Science and Technology, Yangtze University, Jingzhou, China.
Among the various sources of selenium supplementations, the Se-methylselenocysteine (SeMC) is a natural organic selenium compound that has been demonstrated to have multiple advantages in terms of metabolism efficiency and biosafety in animals. Nevertheless, the genome-wide impact of SeMC on gene transcription remains to be elucidated. In this study, we employed an LPS-stimulated chicken HD11 macrophage-like cell model to identify the principal transcription factors involved in transcriptome regulation responsible for SeMC treatment.
View Article and Find Full Text PDFPulm Circ
January 2025
Department of Imaging and Pathology, Biomedical MRI KU Leuven Leuven Belgium.
The pulmonary vasculature plays a pivotal role in the development and progress of chronic lung diseases. Due to limitations of conventional two-dimensional histological methods, the complexity and the detailed anatomy of the lung blood circulation might be overlooked. In this study, we demonstrate the practical use of optical serial block face imaging (SBFI), ex vivo microcomputed tomography (micro-CT), and nondestructive optical tomography for visualization and quantification of the pulmonary circulation's 3D architecture from macro- to micro-structural levels in murine lung samples.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China.
Objective: Minor ginsenosides have demonstrated promising anticancer effects in previous reports. Total minor ginsenosides (TMG) were obtained through the fermentation of major ginsenosides with , and potential anticancer effects of TMGs on the mouse colon cancer cell line CT26.WT, and , were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!