J. Zhu , WT. Gu , and C. Yu , "MATN1-AS1 Promotes Glioma Progression by Functioning as ceRNA of miR-200b/c/429 to Regulate CHD1 Expression," Cell Proliferation 53, no. 1 (2020): e12700. https://doi.org/10.1111/cpr.12700. The above article, published online on 30 October 2019, in Wiley Online Library (wileyonlinelibrary.com), and has been retracted by agreement between the authors; the journal Deputy Editor, Yunfeng Lin; and John Wiley & Sons Ltd. The authors contacted the journal and reported that they had detected mistakes in the figures that compromised the validity of the article's results and requested a retraction. In addition, a report from a third party found duplications between Figures 2E and 2C with other articles by different authors, each of which describe different experimental conditions. Following further correspondence, the authors acknowledged these duplications and have stated that they cannot confirm the authenticity of the data. The retraction has been agreed to because the duplications of images across different articles fundamentally compromises the conclusions and results presented in the article.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628722 | PMC |
http://dx.doi.org/10.1111/cpr.13767 | DOI Listing |
Front Immunol
January 2025
Department of Oncology, Suining Central Hospital, Suining, Sichuan, China.
Glioblastoma(GBM) is a highly malignant primary central nervous system tumor that poses a significant threat to patient survival due to its treatment resistance and rapid recurrence.Current treatment options, including maximal safe surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, have limited efficacy.In recent years, the role of glycolytic metabolic reprogramming in GBM has garnered increasing attention.
View Article and Find Full Text PDFLife Metab
April 2024
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
Isocitrate dehydrogenase (IDH) mutations frequently occur in lower-grade gliomas and secondary glioblastomas. Mutant IDHs exhibit a gain-of-function activity, leading to the production of D-2-hydroxyglutarate (D-2HG) by reducing α-ketoglutarate (α-KG), a central player in metabolism and epigenetic modifications. However, the role of α-KG homeostasis in IDH-mutated gliomagenesis remains elusive.
View Article and Find Full Text PDFFront Oncol
January 2025
Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Introduction: The Wnt/planar cell polarity (PCP) signaling pathway is pivotal in regulating various biological processes such as early embryonic development, neural crest cell migration, and cancer invasion. Despite advances in understanding the role of Wnt/PCP pathway dysregulation in tumorigenesis, numerous unanswered questions remain. Our study focused on VANGL2, a core PCP gene, to elucidate its potential mechanistic involvement in cancer development.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.
Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Background: PLK3, which played an important role in cell cycle progression and stress response, was identified as highly expressed in various carcinomas. However, the functions, molecular characteristics, and prognostic value of PLK3 in glioma remained unexplored.
Methods: We analyzed PLK3 expression in glioma samples from multiple databases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!