Background: Experience changes visuo-cortical tuning. In humans, re-tuning has been studied during aversive generalization learning, in which the similarity of generalization stimuli (GSs) with a conditioned threat cue (CS+) is used to quantify tuning functions. Previous work utilized pre-defined tuning shapes (generalization and sharpening patterns). This approach may constrain the ways in which re-tuning can be characterized since the tuning patterns may not match the prototypical functions.
New Method: The present study proposes a flexible and data-driven method for precisely quantifying changes in tuning based on the Ricker wavelet function and the Bayesian bootstrap. This method was applied to EEG and psychophysics data from an aversive generalization learning paradigm.
Results: The Ricker wavelet model fitted the steady-state visual event potentials (ssVEP), alpha-band power, and detection accuracy data well. A Morlet wavelet function was used for comparison and fit the data better in some situations, but was more challenging to interpret. The pattern of re-tuning in the EEG data, predicted by the Ricker model, resembled the shapes of the best fitting a-priori patterns.
Comparison With Existing Methods: Although the re-tuning shape modeled by the Ricker function resembled the pre-defined shapes, the Ricker approach led to greater Bayes factors and more interpretable results compared to a-priori models. The Ricker approach was more easily fit and led to more interpretable results than a Morlet wavelet model.
Conclusion: This work highlights the promise of the current method for capturing the precise nature of visuo-cortical tuning, unconstrained by the implementation of a-priori models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2024.110303 | DOI Listing |
Front Psychol
January 2025
Music College, Shanghai Normal University, Shanghai, China.
Introduction: The significance of music might be attributed to its role in social bonding, a function that has likely influenced the evolution of human musicality. Although there is substantial evidence for the relationship between prosocial songs and prosocial behavior, it remains unclear whether music alone, independent of lyrics, can influence prosocial behaviors. This study investigates whether music and the emotions it induces can influence prosocial decision-making, utilizing the classical two-dimensional model of emotion (mood and arousal).
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
Long-term exposure to ultraviolet radiation compromises skin structural integrity and results in disruption of normal physiological functions. Stem cells have gained attention in anti-photoaging, while controlling the tissue mechanical microenvironment of cell delivery sites is crucial for regulating cell fate and achieving optimal therapeutic performances. Here, we introduce a mechanically regulated human recombinant collagen (RHC) microcarrier generated through microfluidics, which is capable of modulating stem cell differentiation to treat photoaged skin.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
Mechanoluminescent units, when integrated into polymer matrices, undergo structural transformations in response to mechanical force, resulting in changes in fluorescence. This phenomenon holds considerable promise for the development of stress-sensing materials. Despite the high demand for robust, tunable mechanoluminescent mechanophores for force assessment and smart force-responsive materials, strategies for their design and synthesis remain underdeveloped.
View Article and Find Full Text PDFSci Rep
January 2025
Qatar Environment & Energy Research institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar.
Keto-enol tautomerism in organic molecules presents a potential for modulating the charge transport at the nanoscale. The reduction of the isomerization barrier and favoring the highly conductive enol form are the main challenges towards practical implementation of this phenomenon. Using density functional theory calculations, we have demonstrated that pyridinic nitrogen in biphenyl molecules with keto-enol tautomerism can successfully make the conductive enol form energetically more favorable.
View Article and Find Full Text PDFTrends Neurosci
January 2025
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Neurology in the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China. Electronic address:
The precise organization of the complex set of synaptic proteins at the nanometer scale is crucial for synaptic transmission. At the heart of this nanoscale architecture lies the nanocolumn. This aligns presynaptic neurotransmitter release with a high local density of postsynaptic receptor channels, thereby optimizing synaptic strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!