Household air purifiers are widely used to enhance indoor air quality. However, limited information exists regarding the factors that influence their long-term performance. This study investigates the impact of various residential environments on the long-term efficacy of air purifiers. We deployed household air purifiers in three distinct environments: oily fumes (Group A), non-oily fumes (Group C), and a mixture of oily and non-oily fumes (Groups B-I and B-II). The selected air filter consisted of melt-blown polypropylene and activated carbon, materials commonly employed in commercial applications. The results demonstrated that the control efficiency of air purifiers in non-oily fume environments surpassed that in oily fume environments. After 12 months of operation, particulate matter (PM) concentrations rose by 92.7% and 76.5% in oily and non-oily fume environments, respectively. This increase was primarily attributed to the loss of electrostatic attraction in the polypropylene material due to the organic matter in oily particulate matter. After operating for 1000 h, the clean air delivery rate (CADR) attenuation rates for particulate matter were 70.6%, 19.9%, 16.7%, and 12.5% in Groups A, B-I, B-II, and C, respectively. The CADR attenuation rates for formaldehyde were 80.6%, 48.4%, 38.9%, and 37.3% in the same groups. Additionally, we developed a real-time prediction model for the service life of air purifiers using data from online sensors. When operated for 12 h daily at varying PM concentrations, the filters had an expected service life of 29-97 days in non-oily fume environments and 66-220 days in oily fume environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.120194 | DOI Listing |
Environ Int
January 2025
Blue Growth Research Lab, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium. Electronic address:
Sea spray aerosol (SSA) is a complex mixture of natural substances that can be inhaled by coastal residents. Previous studies have suggested that SSA may have positive effects on human health, but the molecular mechanisms and the factors influencing these effects are poorly understood. In this study, we exposed human bronchial epithelial cells (BEAS-2B) to natural SSA samples, collected monthly using quartz microfiber filters mounted on tripods within 15 m of the waterline, with air drawn through pumps, throughout a one-year period at the Ostend coast, Belgium, and measured cellular gene expression changes using RNA sequencing.
View Article and Find Full Text PDFOphthalmologie
January 2025
Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
Background: The ocular surface is directly exposed to environmental influences. Noxae that have already been identified for the ocular surface are heat, air dryness, pollutant gases, fine dust particles and ultraviolet radiation.
Methods: The current literature was used to investigate the relationship between frequent ocular surface diseases and various environmental factors and to analyze their development over the years.
J Occup Environ Hyg
January 2025
Environmental Engineering Research Laboratory, Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria.
Cooking fuels are sources of polychlorinated biphenyls (PCBs), which are persistent in the environment and have detrimental effects on human health. Fifteen PCBs congeners from the smoke of eight (8) commonly used cooking fuels in Nigeria were investigated in this study. Glass fiber filters were used to collect air emissions during the combustion of cooking fuels in a controlled chamber.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, Ohio.
Structural firefighters are exposed to an array of polycyclic aromatic hydrocarbons (PAHs) as a result of incomplete combustion of both synthetic and natural materials. PAHs are found in both the particulate and vapor phases in the firefighting environment and are significantly associated with acute and chronic diseases, including cancer. Using a fireground exposure simulator (FES) and standing mannequins dressed in four different firefighter personal protective equipment (PPE) conditions, each with varying levels of protective hood interface and particulate-blocking features, the efficacy of the hoods was assessed against the ingress of PAHs (specifically, naphthalene).
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China.
Exposure to air pollutants is linked to an increased risk of obesity, and socioeconomic status (SES) could modulate this risk. We employed the "Jinchang Cohort" as a platform to investigate the influence of SES (education level, monthly income per household, and marital status) on the obesity risk associated with PM and its constituents. Study has demonstrated that air pollutant exposure enhances the likelihood of overweight/obesity, with a risk ratio (HR) of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!