Background: Hematoma clearance is crucial for treating intracerebral hemorrhage (ICH). Currently, there is a lack of pharmacological therapy aimed at promoting hematoma absorption. Meningeal lymphatic system, as a drain of brain, is a potential therapeutic approach in ICH. Panax Notoginseng Saponins (PNS), proven to promote lymphangiogenesis in periphery, effectively reduces hematoma in ICH patients. However, the potential pharmacological effect of PNS on meningeal lymphatic vessels (MLVs) remains unknown.
Purpose: In this study, we aimed to investigate the impact of PNS on the meningeal lymphatic system and ICH.
Methods: The collagenase-ICH model was conducted to investigate the effect of PNS. Behavioral tests, including modified neurological severity score (mNSS) and foot-fault test, and hematoma volume were used to estimate the neurological function and curative effect. The structure and drainage function of MLVs was detected by immunohistochemical staining. Visudyne intracisternal magna injection combined with red laser photoconversion was performed to ablate MLVs. RNA-sequencing was used to obtain mRNA profiles for mechanistic investigation.
Results: The meningeal lymphatic drainage function was enhanced after ICH on day 14 without obvious lymphangiogenesis. Additionally, PNS further facilitated the process of drain with simultaneously inducing lymphangiogenesis. Moreover, ablation of MLVs by photoconverting of visudyne significantly blocked the benefits of neurological deficits improvement and hematoma absorption conducted by PNS. Furthermore, RNA-sequencing revealed that PNS regulated axonogenesis and inflammation, relying on the intact MLVs. In which, solute carrier family 17 member 7 (Slc17a7) and tumor necrosis factor (Tnf) were identified as bottleneck and hub nodes of the protein-protein interaction network of target genes, respectively.
Conclusion: PNS might be effective for ICH treatment by enhancing lymphangiogenesis and the meningeal lymphatic drainage function, thereby attenuating inflammation and promoting neurological recovery. The role of PNS in regulation of MLVs was investigated for the first time. This study provides a novel insight for PNS in the medical therapy of ICH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2024.156149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!