Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Saturate and aromatic compounds are essential in the petroleum industry for assessing the thermal maturity of source rocks and oils, which is critical for basin modeling and sweet-spot mapping. These compounds also play a role in environmental applications, such as oil spill fingerprinting and biogeochemistry. However, the analysis of these compounds by gas chromatography-mass spectrometry (GC-MS) requires meticulous and time-consuming separation processes. Traditional methods like normal-phase liquid column chromatography (LCC) involve large volumes of harmful solvents. This study evaluates the effectiveness of five different sorbents using solid-phase extraction (SPE) techniques-neutral Si, SiOH, Ag-ion, neutral Al, and Ag-ion mixed with activated silica-compared to LCC. The goal was to discern differences in peak resolution, concentration, and isomer ratios of saturate and aromatic compounds for thermal maturity and source rock assessments. The results show that SiOH, neutral Si, and neutral Al do not fully separate aromatic compounds from the saturate fraction, sometimes leaving 40-100% of aromatics within the saturate fraction. Ag-ion mixed with activated silica provided the best separation, resulting in up to 23 times higher aromatic concentration than SiOH. This method is more reliable for quantifying both saturate and aromatic compounds, increases the efficiency of hydrocarbon evaluations, and reduces solvent consumption by 63%, offering a more sustainable approach to hydrocarbon analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2024.465435 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!