Fate of arsenic in contaminated coastal soil induced by rising temperature and seawater intrusion.

Mar Environ Res

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China. Electronic address:

Published: November 2024

Temperature rising and seawater intrusion are expected to influence the hydrologic regime and redox conditions in coastal soil, and the fate and mechanisms of biogeochemical cycling of Arsenic (As) in the specific environment are poorly understood. This work was carried out in an anaerobic operating chamber by adding sulfate to simulate seawater intrusion under various temperature. Results demonstrated the microbial community diversity was influenced by temperature and the highest Shannon and lowest Simpson index were found at 28 °C. Firmicutes was the dominant bacteria, accounting for 81.16%-93.99%. Desulfosporosinus, with the proportion increasing with temperature, showed a significantly positive correlation with S for sulfate addition treatments. Actually, transformation of As was meditated by the concentration and valence of sulfur and iron in soil. The dissimilatory reduction of arsenic-bearing Fe oxides occurring in the initial stage, is suspected to be the primary driver of As release. Then, concentration of As declined in aqueous phase due to the reduction of sulfate, and the proportion of residual speciation of As in solid phase increased with temperature, ranging from 6.78% to 27.70%. The results displayed the reducing condition due to seawater intrusion and temperature change could regulate the release and sequestration of As in the coastal soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2024.106799DOI Listing

Publication Analysis

Top Keywords

seawater intrusion
16
coastal soil
12
intrusion temperature
12
temperature
7
fate arsenic
4
arsenic contaminated
4
contaminated coastal
4
soil
4
soil induced
4
induced rising
4

Similar Publications

Seawater intrusion and human activities have significantly impacted coastal groundwater quality in many regions worldwide. This study systematically assessed groundwater chemistry, its suitability for drinking and irrigation (sample size, n = 3034), and exposure risks (n = 2863) across three key sub-regions of the Bohai Sea area: Bohai Bay, Liaodong Bay, and Laizhou Bay. Significant seasonal variations observed in groundwater chemistry at different depths in Bohai Bay region, with severe contamination from salinity-alkalinity and nitrogen-fluoride.

View Article and Find Full Text PDF

Antibiotic resistance gene levels within a highly urbanised estuary.

Mar Environ Res

January 2025

University of Technology Sydney, The School of Life Sciences, Ultimo, NSW, 2007, Australia. Electronic address:

Antibiotic resistant bacteria are increasingly being found in aquatic environments, representing a potential threat to public health. To examine the dynamics and potential sources of antibiotic-resistant genes (ARGs) in urbanised waterways, we performed a six-month temporal study at six locations within the Sydney Harbour estuary. These locations spanned a salinity gradient from seawater at the mouth of the harbour to freshwater at the more urbanised western sites.

View Article and Find Full Text PDF

Biochar Amendment Alleviates the Risk of High-Salinity Saltwater Intrusion for the Growth and Yield of Rice L.).

Recent Adv Food Nutr Agric

January 2025

Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.

Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.

Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.

View Article and Find Full Text PDF

Mapping of water spread dynamics of a tropical Ramsar wetland of India for conservation and management.

Environ Monit Assess

January 2025

Department of Fisheries Resource Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682506, India.

Wetlands are dynamic ecosystems vital for sustaining ecological health and development at regional and global scales. Geospatial tools have emerged as essential for managing wetland ecosystems. This study assessed the spatiotemporal dynamics of water spread in the Point Calimere Wetland, a coastal Ramsar site located along the Bay of Bengal, India, from 1984 to 2023.

View Article and Find Full Text PDF

The present study aimed to investigate the hydrogeochemical patterns and contamination of the radiogeology, especially radon activity, related to geothermal aquifer properties and to perform a risk assessment of annual effective doses covering all hydrothermal spring attractions in Southern Thailand. Radon is an established lung carcinogen; especially longer term exposure to radioactive radon through inhalation could be a cause of lung cancer risk. Altogether 22 hydrothermal spring samples were collected from the six hydrothermal provinces in Southern Thailand in early November of 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!