Cell wall remodeling confers plant architecture with distinct wall structure in Nelumbo nucifera.

Plant J

Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China.

Published: November 2024

AI Article Synopsis

  • - The study investigates the genetic basis of plant architecture traits in the lotus plant (Nelumbo nucifera G.) by analyzing seven specific characteristics through genome-wide association analysis (GWAS) in 301 lotus accessions over four years.
  • - Researchers identified 90 genetic loci associated with these architecture traits and conducted RNA sequencing to find differential gene expression between large and small plant architectures, pinpointing eight key genes related to cell wall remodeling.
  • - Results show that large plant architecture varieties have higher cellulose and hemicellulose content, while small varieties contain more pectin and lignin, indicating that cell wall composition significantly influences plant architecture, offering resources for future breeding efforts.

Article Abstract

Lotus (Nelumbo nucifera G.) is a perennial aquatic horticultural plant with diverse architectures. Distinct plant architecture (PA) has certain attractive and practical qualities, but its genetic morphogenesis in lotus remains elusive. In this study, we employ genome-wide association analysis (GWAS) for the seven traits of petiole length (PLL), leaf length (LL), leaf width (LW), peduncle length (PLF), flower diameter (FD), petal length (PeL), and petal width (PeW) in 301 lotus accessions. A total of 90 loci are identified to associate with these traits across 4 years of trials. Meanwhile, we perform RNA sequencing (RNA-seq) to analyze the differential expression of the gene (DEG) transcripts between large and small PA (LPA and SPA) of lotus stems (peduncles and petioles). As a result, eight key candidate genes are identified that are all primarily involved in plant cell wall remodeling significantly associated with PA traits by integrating the results of DEGs and GWAS. To verify this result, we compare the cell wall compositions and structures of LPA versus SPA in representative lotus germplasms. Intriguingly, compared with the SPA lotus, the LPA varieties have higher content of cellulose and hemicellulose, but less filling substrates of pectin and lignin. Additionally, we verified longer cellulose chains and higher cellulose crystallinity with less interference in LPA varieties. Taken together, our study illustrates how plant cell wall remodeling affects PA in lotus, shedding light on the genetic architecture of this significant ornamental trait and offering a priceless genetic resource for future genomic-enabled breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.17056DOI Listing

Publication Analysis

Top Keywords

cell wall
16
wall remodeling
12
plant architecture
8
nelumbo nucifera
8
spa lotus
8
plant cell
8
lpa varieties
8
lotus
7
plant
5
cell
4

Similar Publications

A viscoelastic-plastic deformation model of hemisphere-like tip growth in Arabidopsis zygotes.

Quant Plant Biol

December 2024

Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo, Japan.

Plant zygote cells exhibit tip growth, producing a hemisphere-like tip. To understand how this hemisphere-like tip shape is formed, we revisited a viscoelastic-plastic deformation model that enabled us to simultaneously evaluate the shape, stress and strain of Arabidopsis () zygote cells undergoing tip growth. Altering the spatial distribution of cell wall extensibility revealed that cosine-type distribution and growth in a normal direction to the surface create a stable hemisphere-like tip shape.

View Article and Find Full Text PDF

A 47-year-old woman with a 12-year history of anemia and high C-reactive protein (CRP) levels was admitted to our hospital with worsening fatigue and night sweats. She had high levels of immunoglobulin G (IgG; 4182 mg/dL), IgA (630.6 mg/dL), and CRP (7.

View Article and Find Full Text PDF

Suppression of Sepsis Cytokine Storm by Escherichia Coli Cell Wall-Derived Carbon Dots.

Adv Mater

January 2025

State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.

Sepsis is a life-threatening disease caused by a dysregulated immune response to infection, often involving the translocation of Gram-negative bacteria such as Escherichia coli (E. coli) into the bloodstream, triggering a cytokine storm. Despite its severity, no effective drugs currently exist for sepsis treatment.

View Article and Find Full Text PDF

Gram-positive bacterial pneumonia is a significant cause of hospitalization and death. Shortage of a good experimental model and therapeutic targets hinders the cure of acute lung injury (ALI). This study has established a mouse model of ALI using Gram-positive bacteria Lactobacillus casie cell wall extracts (LCWE) and identified the key regulator NLRP3.

View Article and Find Full Text PDF

The cellular characteristics of the opportunistic fungal pathogen Cryptococcus species were investigated in the infected liver of an immunocompetent host using transmission electron microscopy (TEM). With no records of immunodeficiency, the 3-year-old female patient displayed a high-grade fever, lethargy, and increasing jaundice. TEM analysis revealed the presence of round yeast cells in the patient's liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!