Protocol for CRISPR-based endogenous protein tagging in mammalian cells.

STAR Protoc

Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada. Electronic address:

Published: December 2024

Tracking the localization and proximal interaction partners of endogenous proteins provides valuable functional insight. Here, we present a protocol for CRISPR-based endogenous protein tagging in mammalian cells. We describe steps for endogenously tagging human TSC22D2 and MAP4, including designing Cas9 and Cas12a guides for knockin, modularized repair template design and cloning, and procedures for lipid transfection and electroporation. This protocol accommodates Cas nucleases in plasmid expression or ribonucleoprotein complex (RNP) formats. This "endo-tagging" approach offers flexibility and broad applicability. For complete details on the use and execution of this protocol, please refer to Xiao et al..

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532990PMC
http://dx.doi.org/10.1016/j.xpro.2024.103404DOI Listing

Publication Analysis

Top Keywords

protocol crispr-based
8
crispr-based endogenous
8
endogenous protein
8
protein tagging
8
tagging mammalian
8
mammalian cells
8
protocol
4
cells tracking
4
tracking localization
4
localization proximal
4

Similar Publications

Unraveling the protein kinase C/NDRG1 signaling network in breast cancer.

Cell Biosci

December 2024

Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.

N-myc downstream-regulated gene 1 (NDRG1) is a member of the NDRG family of intracellular proteins and plays a central role in a wide range of biological processes including stress response, differentiation, and metabolism. The overexpression of NDRG1 is an indicator of poor prognosis in various types of cancer. Here, we found that NDRG1 is an independent prognostic marker of poor outcome in breast cancer (BC).

View Article and Find Full Text PDF
Article Synopsis
  • Traditional overexpression techniques struggle to accurately analyze protein-protein interactions and expression in B lymphocytes due to their resistance to lipid transfection.
  • The article discusses advanced CRISPR/Cas9 knock-in methods that increase efficiency in tagging endogenous proteins, along with protocols for optimizing cutting efficiency and sgRNA selection.
  • Detailed methodologies for engineering B lymphoma cells are provided, including assessing editing efficiency, designing repair templates, electroporation, and selecting engineered cells, enabling broader application in other cell types.
View Article and Find Full Text PDF

The introduction of genome engineering technology has transformed biomedical research, making it possible to make precise changes to genetic information. However, creating an efficient gene-editing system requires a deep understanding of CRISPR technology, and the complex experimental systems under investigation. While Large Language Models (LLMs) have shown promise in various tasks, they often lack specific knowledge and struggle to accurately solve biological design problems.

View Article and Find Full Text PDF

Protocol for CRISPR-based endogenous protein tagging in mammalian cells.

STAR Protoc

December 2024

Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada. Electronic address:

Tracking the localization and proximal interaction partners of endogenous proteins provides valuable functional insight. Here, we present a protocol for CRISPR-based endogenous protein tagging in mammalian cells. We describe steps for endogenously tagging human TSC22D2 and MAP4, including designing Cas9 and Cas12a guides for knockin, modularized repair template design and cloning, and procedures for lipid transfection and electroporation.

View Article and Find Full Text PDF

Prokaryotes use CRISPR-Cas systems to interfere with viruses and other mobile genetic elements. CRISPR arrays comprise repeated DNA elements and spacer sequences that can be engineered for custom target sites. These arrays are transcribed into precursor CRISPR RNAs (pre-crRNAs) that undergo maturation steps to form individual CRISPR RNAs (crRNAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!