Burn and diabetic wounds present significant challenges due to their complex nature, delayed healing, pain, and high susceptibility to bacterial infections. In this study, we developed and evaluated polyurethane (PU) nanofibers embedded with heparin-functionalized silver nanoparticles (hep-AgNPs) using an electrospinning technique. The choice to functionalize silver nanoparticles with heparin was based on heparin's established role in modulating inflammation and promoting angiogenesis. The electrospun nanofibers exhibited smooth, bead-free morphology with diameters ranging from 300 to 500 nm and demonstrated a sustained release of silver over seven days, offering continuous antimicrobial protection. Mechanical testing of the nanofibers revealed excellent strength and elasticity, making them well-suited for flexible wound dressings. The nanofibers also showed superior water absorption, fluid retention, and controlled water vapor transmission, essential for maintaining a moist wound environment conducive to healing. In vitro biocompatibility assays confirmed that the PU/hep-AgNPs bandages were non-toxic to keratinocytes and fibroblasts and significantly accelerated wound closure, as evidenced by scratch assays. The nanofibrous bandages also exhibited potent antibacterial activity against Staphylococcus aureus and Salmonella Typhimurium, two common wound pathogens. Overall, our findings demonstrate that PU/hep-AgNPs nanofibrous bandages are a promising candidate for chronic wound healing. They combine excellent biocompatibility, anti-inflammatory properties, and strong antimicrobial activity, which collectively contribute to faster wound healing and reduced risk of infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136557DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
12
wound healing
12
nanofibrous bandages
8
wound
7
healing
5
polyurethane infused
4
infused heparin
4
heparin capped
4
silver
4
capped silver
4

Similar Publications

Preparation and characterization of cellulose nanocrystal coated with silver nanoparticles with antimicrobial activity by enzyme method.

Int J Biol Macromol

December 2024

Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China. Electronic address:

Silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity and serve as effective antimicrobial agents against antibiotic-resistant bacteria. In this study, agricultural waste corn straw was used as the raw material to obtain cellulose nanocrystal (CNC) through enzymatic hydrolysis. The hydrolysate was employed as reducing agents to synthesize CNC-AgNPs.

View Article and Find Full Text PDF

We report a controlled deposition process using atmospheric plasma to fabricate silver nanoparticle (AgNP) structures on polydimethylsiloxane (PDMS) substrates, essential for stretchable electronic circuits in wearable devices. This technique ensures precise printing of conductive structures using nanoparticles as precursors, while the relationship between crystallinity and plasma treatment is established through X-ray diffraction (XRD) analysis. The XRD studies provide insights into the effects of plasma parameters on the structural integrity and adhesion of AgNP patterns, enhancing our understanding of substrate stretchability and bendability.

View Article and Find Full Text PDF

Rhazya stricta, a perennial shrub native to the Middle East and South Asia, has been used in traditional medicine for various therapeutic purposes, including antimicrobial action. The current study aimed to compare the antifungal properties of 96% and 50% ethanolic extracts of R. stricta leaves and their biogenic silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

Salinity stress adversely affects wheat growth and productivity, necessitating effective mitigation strategies. This study investigates the combined impact of ascorbic acid (AsA), silver nanoparticles (NPs), and Salvadora oleoides aqueous leaf extract (LE) on wheat tolerance to salinity stress. A randomized complete design (RCD) was employed with fourteen treatments: T1 (5 mM AsA), T2 (10 mM AsA), T3 (20 ppm AgNPs), T4 (40 ppm AgNPs), T5 (5% S.

View Article and Find Full Text PDF

Despite the advances in the development of therapeutic wearable wound-healing patches, lack self-healing properties and strong adhesion to diabetic skin, hindering their effectiveness. We propose a unique, wearable patch made from a 3D organo-hydrogel nanocomposite containing polydopamine, titanium dioxide nanoparticles, and silver quantum dots (PDA-TiO@Ag). The designed patch exhibits ultra-stretchable, exceptional-self-healing, self-adhesive, ensuring conformal contact with the skin even during movement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!