Fechner's law proposes a logarithmic relationship between the physical intensity and perceived magnitude of a stimulus. The principle of logarithmic magnitude representation has been extensively utilized in various theoretical frameworks. Although the neural correlates of Weber's law have been considered as possible evidence for Fechner's law, there is still a lack of direct evidence for a logarithmic representation in the central nervous system. In our study, participants were asked to reproduce the time intervals between two circles and ignore their spatial distances while electroencephalogram (EEG) signals were recorded synchronously. Behavioral results showed that a Bayesian model, which assumes a logarithmic representation of spatiotemporal information, was better at predicting production times than a model relying on a linear representation. The EEG results revealed that P2 and P3b amplitudes increased linearly with the logarithmic transformation of spatiotemporal information, and these event-related potentials were localized in the parietal cortex. Our study provides direct evidence supporting logarithmic magnitude representation in the central nervous system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2024.10.025 | DOI Listing |
Drugs Aging
January 2025
Program for the Care and Study of the Aging Heart, Department of Medicine, Weill Cornell Medicine, 420 East 70th St, New York, NY, LH-36510063, USA.
There are several pharmacologic agents that have been touted as guideline-directed medical therapy for heart failure with preserved ejection fraction (HFpEF). However, it is important to recognize that older adults with HFpEF also contend with an increased risk for adverse effects from medications due to age-related changes in pharmacokinetics and pharmacodynamics of medications, as well as the concurrence of geriatric conditions such as polypharmacy and frailty. With this review, we discuss the underlying evidence for the benefits of various treatments in HFpEF and incorporate key considerations for older adults, a subpopulation that may be at higher risk for adverse drug events.
View Article and Find Full Text PDFCurr Diab Rep
January 2025
Department of Family Medicine, University of Colorado School of Medicine, 13199 E Montview Blvd, Aurora, CO, 8004, USA.
Purpose Of Review: Addressing diabetes distress (DD), the emotional demands of living with diabetes, is a crucial component of diabetes care. Most individuals with type 2 diabetes and approximately half of adults with type 1 diabetes receive their care in the primary care setting. This review will provide guidance on addressing DD and implementing targeted techniques that can be tailored to primary care patients.
View Article and Find Full Text PDFDiabetologia
January 2025
Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
The incidence of type 2 diabetes has risen globally, in parallel with the obesity epidemic and environments promoting a sedentary lifestyle and low-quality diet. There has been scrutiny of ultra-processed foods (UPFs) as a driver of type 2 diabetes, underscored by their increasing availability and intake worldwide, across countries of all incomes. This narrative review addresses the accumulated evidence from investigations of the trends in UPF consumption and the relationship with type 2 diabetes incidence.
View Article and Find Full Text PDFJ Neurochem
January 2025
Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
Epitranscriptomic regulation of cell functions involves multiple post-transcriptional chemical modifications of coding and non-coding RNA that are increasingly recognized in studying human brain disorders. Although rodent models are presently widely used in neuroepitranscriptomic research, the zebrafish (Danio rerio) has emerged as a useful and promising alternative model species. Mounting evidence supports the importance of RNA modifications in zebrafish CNS function, providing additional insights into epitranscriptomic mechanisms underlying a wide range of brain disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!