Enzymatic tools for mitochondrial genome manipulation.

Biochimie

Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation. Electronic address:

Published: October 2024

Mutations in mitochondrial DNA (mtDNA) can manifest phenotypically as a wide range of neuromuscular and neurodegenerative pathologies that are currently only managed symptomatically without addressing the root cause. A promising approach is the development of molecular tools aimed at mtDNA cutting or editing. Unlike nuclear DNA, a cell can have hundreds or even thousands of mitochondrial genomes, and mutations can be present either in all of them or only in a subset. Consequently, the developed tools are aimed at reducing the number of copies of mutant mtDNA or editing mutant nucleotides. Despite some progress in the field of mitochondrial genome editing in human cells, working with model animals is still limited due to the complexity of their creation. Furthermore, not all existing editing systems can be easily adapted to function within mitochondria. In this review, we evaluate the mtDNA editing tools available today, with a particular focus on specific mtDNA mutations linked to hereditary mitochondrial diseases, aiming to provide an in-depth understanding of both the opportunities and hurdles to the development of mitochondrial genome editing technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2024.10.013DOI Listing

Publication Analysis

Top Keywords

mitochondrial genome
12
tools aimed
8
mtdna editing
8
genome editing
8
mitochondrial
6
editing
6
mtdna
5
enzymatic tools
4
tools mitochondrial
4
genome manipulation
4

Similar Publications

is an important plant pathogen in maize and other cereals that is seldom detected as the cause of human fusariosis. Here, we provide the analysis of the available diversity of sequenced worldwide and report the first two genome assemblies and annotations (including mitochondrial DNA) of from clinical settings. 05-0160 (IUM05-0160) and 09-1037 (IUM09-1037) strains were obtained from the bone marrow and blood of two immunocompromised patients, respectively.

View Article and Find Full Text PDF

The family Apataniidae consists of two subfamilies, Apataniinae and Moropsychinae. Currently, there are 204 valid species of Apataniidae, which are widely distributed throughout the northern hemisphere. The larvae typically inhabit cold-water environments, and they serve as biological indicators for monitoring the health of freshwater ecosystems.

View Article and Find Full Text PDF

The honeybee plays a crucial role as a pollinator, contributing significantly to biodiversity and supporting ecological processes [...

View Article and Find Full Text PDF

Ithonidae (moth lacewings) are an enigmatic, small family of the insect order Neuroptera (lacewings). Its phylogenetic position within Neuroptera and internal subfamily relationships remain unresolved. In this study, the complete mitochondrial genome (mitogenome) of Tillyard, 1916 representing the first mitogenome of Ithoninae, as well as the complete mitogenome of Liu, Li and Yang, 2018, were newly reported.

View Article and Find Full Text PDF

Comparison of the Effects of UV-C Light in the Form of Flash or Continuous Exposure: A Transcriptomic Analysis on L.

Int J Mol Sci

December 2024

Unité Propre de Recherche Innovante, ERIT Plant Science, Interactions and Innovation, Avignon Université, 301 Rue Baruch de Spinoza, 84140 Avignon, France.

Ultraviolet C (UV-C) flash treatment represents a promising method for priming plants. This study compared the effects of 1 s (flash) and 60 s (60 s) UV-C exposures on the transcriptome of L. plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!