This study aims to investigate the mechanism by which Histidine triad nucleotide-binding protein 1 (HINT1) promotes hippocampal neuronal apoptosis, triggering schizophrenia (SZ)-like behavior in rats. By establishing a rat SZ-like model, we assessed learning, memory, emotional response, and cognitive function through the Morris Water Maze, auditory startle response, and open field tests. HINT1 expression in the hippocampus was analyzed via RT-PCR and Western blot. We also created a HINT1 overexpression model in hippocampal neuronal cells to analyze its effects on cell proliferation and apoptosis. This analysis was conducted using the CCK-8 assay and flow cytometry, along with the quantification of apoptosis-related proteins and neurotrophic factors. Our findings indicated that the SZ-like model rats exhibited diminished learning and memory abilities, altered emotional reactions, and impaired cognitive functions, alongside a notable increase in HINT1 mRNA and protein levels. HINT1 overexpression was observed to inhibit hippocampal neuronal cell proliferation and promote apoptosis, with an increase in the expression of pro-apoptotic proteins and a decrease in neurotrophic factors. These results suggest HINT1's role in the onset and development of SZ-like behavior through its upregulation and induction of apoptosis in hippocampal neuronal cells, underlining its potential as a therapeutic target.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2024.115297DOI Listing

Publication Analysis

Top Keywords

hippocampal neuronal
16
hint1 promotes
8
neuronal apoptosis
8
behavior rats
8
sz-like behavior
8
sz-like model
8
learning memory
8
hint1 overexpression
8
neuronal cells
8
cell proliferation
8

Similar Publications

Recent studies, typically using patient cerebrospinal fluid (CSF), have suggested that different autoantibodies (Aabs) acting on their respective receptors, may underlie neuropsychiatric disorders. The GluN1 (NR1) subunit of the N-methyl-D-aspartate receptor (NMDAR) has been identified as a target of anti-NMDAR Aabs in a number of central nervous system (CNS) diseases, including encephalitis and autoimmune epilepsy. However, the role or the nature of Aabs responsible for effects on neuronal excitability and synaptic plasticity is yet to be established fully.

View Article and Find Full Text PDF

Adverse complications like metabolic disorders, neurotoxicity, and low central nervous system (CNS) penetration are associated with the long-term use of tenofovir disoproxil fumarate (TDF). Therefore, some modifications are required to enhance neurological functions using silver nanoparticles (AgNPs). This study aimed to evaluate the neuroprotective impact of silver nanoparticles (AgNPs)-conjugated TDF as AgNPs-TDF on the hippocampal microanatomy and some neuro-biomarkers of diabetic rats.

View Article and Find Full Text PDF

Background: αδ proteins regulate membrane trafficking and biophysical properties of voltage-gated calcium channels. Moreover, they modulate axonal wiring, synapse formation, and trans-synaptic signaling. Several rare missense variants in CACNA2D1 (coding for αδ-1) and CACNA2D3 (coding for αδ-3) genes were identified in patients with autism spectrum disorder (ASD).

View Article and Find Full Text PDF

Infants born with intrauterine growth restriction (IUGR) have up to a five-fold higher risk of learning and memory impairment than those with normal growth. Using a mouse model of hypertensive diseases of pregnancy (HDP) to replicate uteroplacental insufficiency (UPI), we have previously shown that UPI causes premature embryonic hippocampal dentate gyrus (DG) neurogenesis in IUGR offspring. The DG is a brain region that receives the first cortical information for memory formation.

View Article and Find Full Text PDF

Sexual and Metabolic Differences in Hippocampal Evolution: Alzheimer's Disease Implications.

Life (Basel)

November 2024

Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain.

Sex differences in brain metabolism and their relationship to neurodegenerative diseases like Alzheimer's are an important emerging topic in neuroscience. Intrinsic anatomic and metabolic differences related to male and female physiology have been described, underscoring the importance of considering biological sex in studying brain metabolism and associated pathologies. The hippocampus is a key structure exhibiting sex differences in volume and connectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!