Antisense oligonucleotides have been developed as therapeutic compounds, with peptide nucleic acid (PNA) emerging as a promising nucleic acid mimic for antimicrobial applications. To be effective, PNAs must be internalized into bacterial cells, as they are not naturally absorbed. A strategy to improve PNA membrane penetration and cellular uptake involves covalently conjugating them to cell-penetrating peptides. However, these membrane-active peptides can exhibit cytotoxicity, and their efficiency as PNA carriers needs to be enhanced. Therefore, we explored new peptide-PNA conjugates and their linkers to understand how they affect PNA uptake into bacteria. We conjugated PNA to two peptides, anoplin and (KFF)K, along with their structurally stabilized hydrocarbon-stapled derivatives, and evaluated their transport into various bacterial strains. The PNA sequence targeted bacterial mRNA encoding the essential acyl carrier protein. As linkages, we used either a non-cleavable 8-amino-2,6-dioxaoctanoyl (ethylene glycol, eg1) linker or a reducible disulfide bridge. We found that the hydrocarbon-stapled peptides did not enhance PNA delivery, despite the strong inner- and outer-membrane-penetrating capabilities of the standalone peptides. Additionally, the disulfide bridge linkage, which is cleavable in the bacterial cytoplasm, decreased the antimicrobial activity of the peptide-PNA conjugates. Notably, we identified anoplin as a new potent PNA carrier peptide, with the anoplin-eg1-PNA conjugate demonstrating antibacterial activity against E. coli and S. Typhimurium strains in the 2-4 µM range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2024.129993 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!