This review describes the multiple advantages of using of EcNikA, a nickel transport protein, in the design of artificial metalloenzymes as alternative catalysts for synthetic biology. The rationale behind the strategy of artificial enzyme design is discussed, with particular emphasis on de novo active site reconstitution. The impact of the protein scaffold on the artificial active site and thus the final catalytic properties is detailed, highlighting the considerable aptitude of hybrid systems to catalyze selective reactions, from alkene to thioether transformations (epoxidation, hydroxychlorination, sulfoxidation). The different catalytic approaches - from in vitro to in cristallo - are compared, revealing the considerable advantages of protein crystals in terms of stabilization and acceleration of reaction kinetics. The versatility of proteins, based on metal and ligand diversity and medium/physical conditions, are thus illustrated for oxidation catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2024.112740 | DOI Listing |
Adv Sci (Weinh)
January 2025
Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Orsay, 91400, France.
To efficiently capture, activate, and transform small molecules, metalloenzymes have evolved to integrate a well-organized pocket around the active metal center. Within this cavity, second coordination sphere functionalities are precisely positioned to optimize the rate, selectivity, and energy cost of catalytic reactions. Inspired by this strategy, an artificial distal pocket defined by a preorganized 3D strap is introduced on an iron-porphyrin catalyst (sc-Fe) for the CO-to-CO electrocatalytic reduction.
View Article and Find Full Text PDFJ Inorg Biochem
January 2025
Yusuf Hamied Department of Chemistry, Lensfield Rd, Cambridge CB2 1EW, UK.
By introducing new-to-nature transformations, artificial metalloenzymes hold great potential for expanding the biosynthetic toolbox. The chemistry of an active cofactor in these enzymes is highly dependent on how the holoprotein is assembled, potentially limiting the choice of organometallic complexes amenable to incorporation and ability of the protein structure to influence the metal centre. We have previously reported a method utilising ligand exchange as a means to introduce ruthenium-arene fragments into a four-helix bundle protein.
View Article and Find Full Text PDFNat Chem Biol
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, I, SIC-LSCI, BCH 3305, Lausanne, 1015, Switzerland Website.
Artificial metalloenzymes (ArMs) enable the integration of abiotic cofactors within a native protein scaffold, allowing for non-natural catalytic activities. Previous ArMs, however, have primarily relied on single cofactor systems, limiting them to only one catalytic function. Here we present an approach to construct ArMs embedding two catalytic cofactors based on the biotin-streptavidin technology.
View Article and Find Full Text PDFCurr Opin Chem Biol
December 2024
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA. Electronic address:
Enzymes catalyze molecular reactions with remarkable efficiency and selectivity under mild conditions. Photoactivated enzymes make use of a light-absorbing chromophore to drive chemical transformations, ideally using sunlight as an energy source. The direct attachment of a chromophore to native enzymes is advantageous, as information on the underlying catalytic mechanisms can be obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!