Improving rice grain shape through upstream ORF editing-mediated translation regulation.

Plant Physiol

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China.

Published: December 2024

Download full-text PDF

Source
http://dx.doi.org/10.1093/plphys/kiae557DOI Listing

Publication Analysis

Top Keywords

improving rice
4
rice grain
4
grain shape
4
shape upstream
4
upstream orf
4
orf editing-mediated
4
editing-mediated translation
4
translation regulation
4
improving
1
grain
1

Similar Publications

Introduction: Drought stress severely hampers seedling growth and root architecture, resulting in yield penalties. Seed priming is a promising approach to tolerate drought stress for stand establishment and root development.

Methods: Here, various seed priming treatments, .

View Article and Find Full Text PDF

OsPAD1, encoding a non-specific lipid transfer protein, is required for rice pollen aperture formation.

Plant Mol Biol

December 2024

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China.

Article Synopsis
  • - Plant lipid transfer proteins (LTPs) are crucial for moving lipids between membranes, impacting pollen wall development, including the pollen aperture structure.
  • - The study focuses on a rice mutant called pollen aperture defect 1 (Ospad1), which shows male sterility due to abnormal pollen grain development linked to a non-specific LTP that fails to properly bind lipids.
  • - Researchers found that OsPAD1 interacts with a gene involved in pollen development, providing new insights into how LTPs function in forming pollen apertures, which could have broader implications for other cereal crops.
View Article and Find Full Text PDF

RNA modifications in plant adaptation to abiotic stresses.

Plant Commun

December 2024

Jiangsu International Joint Center of Genomics, Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China,. Electronic address:

Epitranscriptomic chemical modifications of RNAs have emerged as potent regulatory mechanisms in the plant stress adaptation process. Currently, over 170 distinct chemical modifications have been identified in mRNAs, tRNAs, rRNAs, microRNAs (miRNAs), and long-noncoding RNAs (lncRNAs). The genetic and molecular studies have identified the genes responsible for adding and removing chemical modifications on RNA molecules, known as "writers" and "erasers," respectively.

View Article and Find Full Text PDF

A nationwide questionnaire study evaluated kidney injury associated with Beni-koji tablets in Japan.

Kidney Int

December 2024

Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Japan. Electronic address:

Red yeast rice, traditionally used in Asian cuisine and increasingly marketed as a dietary supplement for cholesterol management, has recently been linked to kidney dysfunction in Japan. In late 2023 to early 2024, multiple cases involving specific Beni-koji (red yeast rice) tablets from three different Beni-koji preparations, prompted a safety reevaluation. Although citrinin, a known nephrotoxin of red yeast rice, was not produced by the implicated strains, new safety concerns emerged.

View Article and Find Full Text PDF

Nano-assisted delivery tools for plant genetic engineering: a review on recent developments.

Environ Sci Pollut Res Int

December 2024

Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, UP, India.

Conventional approaches like Agrobacterium-mediated transformation, viral transduction, biolistic particle bombardment, and polyethylene glycol (PEG)-facilitated delivery methods have been optimized for transporting specific genes to various plant cells. These conventional approaches in genetically modified crops are dependent on several factors like plant types, cell types, and genotype requirements, as well as numerous disadvantages such as time-consuming, untargeted distribution of genes, and high cost of cultivation. Therefore, it is suggested to develop novel techniques for the transportation of genes in crop plants using tailored nanoparticles (NPs) of manipulative and controlled high-performance features synthesized using green and chemical routes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!