Although self-incompatibility in apples (Malus × domestica Borkh.) is regulated by a single S-locus with multiple S-haplotypes that comprise pistil S (S-RNase) and pollen S genes, it is not desirable in commercial orchards because it requires cross-pollination to achieve stable fruit production. Therefore, it is important to identify and characterize self-compatible apple cultivars. However, little is known about self-compatibility (SC) and its underlying molecular mechanisms in apples. In this study, we discovered that 'Vered', an early maturing and low chilling-requiring apple cultivar, exhibits stable SC, which was evaluated via self-pollination tests. The S-genotype of 'Vered' was designated as SS. Results of genetic analysis of selfed progeny of 'Vered' revealed that SC is associated with the S-haplotype, and molecular analyses indicated that it is caused by alternative splicing and a 205-bp deletion in S-RNase. These events induce frameshifts and ultimately produce the defective S-RNase isoforms that lack their C-terminal half. These results enabled us to develop a 117-bp DNA marker that can be used to assist in the selection of self-compatible apples with the dysfunctional S-RNase. Thus, analysis of 'Vered' provided insights into the molecular mechanism of the very rare trait of natural stylar-part SC. Moreover, 'Vered' is a valuable genetic resource for breeding cultivars with SC and/or low chilling requirement in apple. Our findings contribute to a better understanding of self-compatible molecular mechanisms in apple and provide for the accelerated breeding of self-compatible apple cultivars.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-024-01514-0 | DOI Listing |
BMC Genomics
December 2024
School of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, Shandong Province, 266071, China.
Background: Discontinuous transcription allows coronaviruses to efficiently replicate and transmit within host cells, enhancing their adaptability and survival. Assembling viral transcripts is crucial for virology research and the development of antiviral strategies. However, traditional transcript assembly methods primarily designed for variable alternative splicing events in eukaryotes are not suitable for the viral transcript assembly problem.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2024
Tianjin Fourth Central Hospital, The Affiliated Hospital of Tianjin Medical University, Tianjin 300140, China. Electronic address:
Background: The mechanisms underlying the complex relationship between autoimmune hypothyroidism and neurological disorders remain unclear. We conducted a comprehensive analysis of associations between alternative splicing, transcriptomics, and proteomics data and autoimmune hypothyroidism.
Methods: Splicing-Wide association studies (SWAS), proteome-wide association studies (PWAS), and transcriptome-wide association studies (TWAS) were used to identify genes and proteins that regulate autoimmune hypothyroidism within the brain axis.
Front Immunol
December 2024
Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China.
Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation.
View Article and Find Full Text PDFLife Sci
December 2024
Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China. Electronic address:
It is becoming increasingly evident that diabetic vascular complications seriously threaten human health. The most prevalent microvascular complications include kidney disease, retinal disease, cardiovascular diseases and amputation. Conventional treatments can only relieve the progression of the diseases, and is no longer appropriate for the long-term management of diabetic patients.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.
Alternative splicing (AS) contributes to transcript and protein diversity, affecting their structure and function. However, the specific transcriptional regulatory mechanisms underlying AS in the context of hepatic ischemia reperfusion (IR) injury in mice have not been extensively characterized. In this study, we investigated differentially alternatively spliced (DAS) genes and differentially expressed transcripts (DETs) in a mouse model of hepatic IR injury using the high throughput RNA sequencing (RNA-seq) analysis and replicate multivariate analysis of transcript splicing (rMATS) analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!