A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In Situ Crystal Growth and Fusing-Confined Engineering of Quasi-Monocrystalline Perovskite Thick Junctions for X-ray Detection and Imaging. | LitMetric

Metal halide perovskites exhibit great promise for utilization in X-ray detection owing to their excellent optoelectronic properties and high X-ray attenuation capabilities. However, fabricating large-area thick films for high-performance perovskite X-ray detection remains challenging. This study develops an in situ crystal growth and fusing-confined approach to prepare high-quality, large-scale perovskite quasi-monocrystalline thick junctions. The perovskite crystals are grown in situ using a highly concentrated perovskite colloidal solution in 2-methoxyethanol. Introducing methylammonium chloride enhances grain reorganization during in situ growth and fusing-confined processes, effectively reducing grain boundaries and surface defects. This allows for the preparation of quasi-monocrystalline thick junctions of large grains (>100 μm) with high crystallinity, uniform orientation, and vertical penetration across the film thickness. Additionally, the carrier mobility and lifetime of the thick junctions are significantly enhanced. The optimized MAPbI detectors demonstrate an X-ray sensitivity of 2.6 × 10 μC Gy cm and an exceptionally low detection limit of 1 nGy s. Furthermore, inspired by a honeycomb structure, these detectors realize X-ray imaging in 64 × 64 pixels through a pixelated separation design, effectively reducing the charge-sharing effect. This study offers valuable insights into the preparation of large-scale perovskite quasi-monocrystalline thick junctions for highly sensitive X-ray detection and imaging applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c09823DOI Listing

Publication Analysis

Top Keywords

thick junctions
20
x-ray detection
16
growth fusing-confined
12
quasi-monocrystalline thick
12
situ crystal
8
crystal growth
8
detection imaging
8
large-scale perovskite
8
perovskite quasi-monocrystalline
8
effectively reducing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!