The challenging task of designing biopharmaceutical downstream processes is initially to select the type of unit operations, followed by optimizing their operating conditions. For complex flowsheet optimizations, the strategy becomes crucial in terms of duration and outcome. In this study, we compared three optimization strategies, namely, simultaneous, top-to-bottom, and superstructure decomposition. Moreover, all strategies were evaluated by either using chromatographic Mechanistic Models (MMs) or Artificial Neural Networks (ANNs). An overall evaluation of 39 flowsheets was performed, including a buffer-exchange step between the chromatography operations. All strategies identified orthogonal structures to be optimal, and the weighted overall performance values were generally consistent between the MMs and ANNs. In terms of time-efficiency, the decomposition method with MMs stands out when utilizing multiple cores on a multiprocessing system for simulations. This study analyses the influence of different optimization strategies on flowsheet optimization and advices on suitable strategies and modeling techniques for specific scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.3514 | DOI Listing |
Expert Opin Drug Deliv
January 2025
CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
Introduction: Although there are numerous options for epilepsy treatment, its effective control continues unsatisfactory. Thus, search for alternative therapeutic options to improve the efficacy/safety binomial of drugs becomes very attractive to investigate. In this context, intranasal administration of antiseizure drugs formulated on state-of-the-art nanosystems can be a promising strategy.
View Article and Find Full Text PDFJ Gastrointest Cancer
January 2025
Colorectal Research Center, Imam Khomeini Hospital complex, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran.
Purpose: Carcinoembryonic antigen (CEA) is an important prognostic factor for rectal cancer. This study aims to introduce a novel cutoff point for CEA within the normal range to improve prognosis prediction and enhance patient stratification in rectal cancer patients.
Methods: A total of 316 patients with stages I to III rectal cancer who underwent surgical tumor resection were enrolled.
Curr Cardiol Rep
January 2025
Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Purpose Of Review: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, characterized by hepatic steatosis with at least one cardiometabolic risk factor. Patients with MASLD are at increased risk for the occurrence of cardiovascular events. Within this review article, we aimed to provide an update on the pathophysiology of MASLD, its interplay with cardiovascular disease, and current treatment strategies.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
Herein, we propose to synthesize stereoblock polythioethers through the chain shuttling enantioselective ring-opening polymerization (ROP) of thiiranes. The use of diastereoisomeric dinuclear Cr complexes with optimized steric hindrance allowed the production of polythioethers with both a head-to-tail content and isotacticity of >99%. In particular, the introduction of dithiols enabled the synthesis of stereoblock polythioethers via a chain shuttling process, thus producing sulfhydryl-telechelic polythioethers with tunable thermal properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!