A continuum mixture theory is formulated for large deformations, thermal effects, phase interactions, and degradation of soft biologic tissues suitable at high pressures and low to very high strain rates. Tissues consist of one or more solid and fluid phases and can demonstrate nonlinear anisotropic elastic, viscoelastic, thermoelastic, and poroelastic physics. Under extreme deformations or shock loading, tissues may fracture, tear, or rupture. Existing models do not account for all physics simultaneously, and most poromechanics and soft-tissue models assume incompressibility of some or all constituents, generally inappropriate for modeling shock waves or extreme compressions. Motivated by these prior limitations, a thermodynamically consistent formulation that combines a continuum theory of mixtures, compressible nonlinear anisotropic thermoelasticity, viscoelasticity, and phase-field mechanics of fracture is constructed to resolve the pertinent physics. A metric tensor of generalized Finsler space supplies geometric insight on effects of rearrangements of microstructure, for example degradation, growth, and remodeling. Shocks are modeled as singular surfaces. Hugoniot states and shock decay are analyzed: Solutions account for concurrent viscoelasticity, fracture, and interphase momentum and energy exchange not all contained in previous analyses. Suitability of the framework for representing blood, skeletal muscle, and liver is demonstrated by agreement with experimental data and observations across a range of loading rates and pressures. Insight into previously unresolved physics is obtained, for example importance of rate sensitivity of damage and quantification of effects of dissipation from viscoelasticity and phase interactions on shock decay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.110.035001 | DOI Listing |
All biological systems are subject to perturbations: due to thermal fluctuations, external environments, or mutations. Yet, while biological systems are composed of thousands of interacting components, recent high-throughput experiments show that their response to perturbations is surprisingly low-dimensional: confined to only a few stereotyped changes out of the many possible. Here, we explore a unifying dynamical systems framework - soft modes - to explain and analyze low-dimensionality in biology, from molecules to eco-systems.
View Article and Find Full Text PDFCureus
December 2024
Department of Dental Sciences, Faculty of Medicine, University of Liege, Liege, BEL.
Background Fracture of nickel-titanium (Ni-Ti) instruments in root canals is commonly associated with compromised outcomes in endodontic treatment. There is no single, universally accepted approach for managing this complication. The objective of this study is to evaluate the effectiveness of an Nd: YAP laser-assisted protocol in removing fractured Ni-Ti files in teeth with minimal root curvature (less than 15 degrees).
View Article and Find Full Text PDFAnat Rec (Hoboken)
January 2025
Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Diet is one of a limited set of key ecological parameters defining primate species. A detailed understanding of dental functional correlates with primate diet is a key component for accurate dietary inference in fossil primates. Although considerable effort has been devoted to understanding post-canine dental function, incisor function remains poorly understood.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2025
Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
mRNA delivery has emerged as a transformative approach in biotechnology and medicine, offering a versatile platform for the development of novel therapeutics. Unlike traditional small molecule drugs or protein-based biologics, mRNA therapeutics have the unique ability to direct cells to generate therapeutic proteins, allowing for precise modulation of biological processes. The delivery of mRNA into target cells is a critical step in realizing the therapeutic potential of this technology.
View Article and Find Full Text PDFNat Commun
January 2025
Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, 5650871, Osaka, Japan.
Cyborg insects refer to hybrid robots that integrate living insects with miniature electronic controllers to enable robotic-like programmable control. These creatures exhibit advantages over conventional robots in adaption to complex terrain and sustained energy efficiency. Nevertheless, there is a lack of literature on the control of multi-cyborg systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!