In many realistic systems, such as neural networks in the brain, the coupling strength between neurons is not fixed, but adaptively adjusts according to their activities. The suprachiasmatic nucleus (SCN), as the main clock in the mammalian brain, has been found to be a plastic neural network, and the coupling strength between neurons is highly dynamical. An important function of the SCN is entrainment, reflecting the ability of the SCN to synchronize with the external light-dark cycle. The entrainment ability is reflected by the entrainment range, which is a period range for the external light-dark cycle to which the SCN can entrain. In this article, we investigated whether the entrainment range of the SCN is affected by the adaptive coupling. We use a modified Kuramoto model with external light-dark cycle. We found that when the light sensitivity is larger than the fixed coupling strength (the coupling strength without adaptive rules), adaptive coupling can widen the entrainment range. Our findings help to understand the impact of the adaptive coupling between oscillatorty neurons on the collective behavior of the SCN, and provides a possible explanation for the plasticity of coupling in the master clock network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.110.034212 | DOI Listing |
Front Plant Sci
January 2025
College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
Introduction: Plant physiology response and adaptation to drought stress has become a hotspot in plant ecology and evolution. possesses high ecological, ornamental and economic benefits. It has large root system and tolerance to cold, drought and poor soil.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Valvular heart disease (VHD) leading to inadequate hemodynamic circulation is a major cause of cardiovascular morbidity and mortality worldwide. Right ventricular-pulmonary artery (RV-PA) coupling integrates the ability of RV contractility to adapt to increased pulmonary arterial afterload. If the right ventricle cannot adapt to the elevated afterload by increasing its contractile function, RV-PA uncoupling occurs.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Nantes Université, École Centrale Nantes, IMT Atlantique, CNRS, LS2N, UMR 6004, Nantes F-44000, France.
Dissipative environments are ubiquitous in nature, from microscopic swimmers in low-Reynolds-number fluids to macroscopic animals in frictional media. In this study, we consider a mathematical model of a slender elastic locomotor with an internal rhythmic neural pattern generator to examine various undulatory locomotion such as swimming and crawling behaviours. By using local mechanical load as mechanosensory feedback, we have found that undulatory locomotion robustly emerges in different rheological media.
View Article and Find Full Text PDFWe detail here the general principle of a self-adaptive oscillator in which the intertwined operation of a 100-m-long active optical resonator and a standard semiconductor laser mutually coupled by stimulated Brillouin scattering offers an ultimate high spectral purity. Single frequency operation of this self-adaptive photonic oscillator is achieved without any servo locking or stabilization electronics. In free running operation, this principle leads to a Lorentzian linewidth of 40 mHz and a Flicker noise linewidth of 200 Hz for 0.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!