Mixed spin-(1/2,1/2,1) trimer with two different Landé g factors and two different exchange couplings is considered. The main feature of the model is nonconserving magnetization. The Hamiltonian of the system is diagonalized analytically. We presented a detailed analysis of the ground-state properties, revealing several possible ground-state phase diagrams and magnetization profiles. The main focus is on how nonconserving magnetization affects quantum entanglement. We have found that nonconserving magnetization can bring a continuous dependence of the entanglement quantifying parameter (negativity) on the magnetic field within the same eigenstate, while for the case of uniform g factors it is a constant. The main result is an essential enhancement of the entanglement in the case of uniform couplings for one pair of spins caused by an arbitrary small difference in the values of g factors. This enhancement is robust and brings almost a sevenfold increase of the negativity. We have also found a weakening of entanglement for other cases. Thus, nonconserving magnetization offers a broad opportunity to manipulate the entanglement by means of a magnetic field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.110.034131 | DOI Listing |
PNAS Nexus
December 2024
RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.
Hydrodynamics is known to emerge in electron flow when the electron-electron interaction dominates over the other momentum-nonconserving scatterings. The hydrodynamic equation that describes the electric current includes viscosity, extending beyond the Ohmic flow. The laminar flow of such a viscous electron fluid in a sample with finite width is referred to as the Poiseuille flow, where the flow velocity is maximum at the center and decreases towards the edges of the sample.
View Article and Find Full Text PDFPhys Rev E
September 2024
Laboratory of Theoretical Physics, Yerevan State University, 1 Alex Manoogian Street, 0025 Yerevan, Armenia and CANDLE, Synchrotron Research Institute, 31 Acharyan Street, 0040 Yerevan, Armenia.
Mixed spin-(1/2,1/2,1) trimer with two different Landé g factors and two different exchange couplings is considered. The main feature of the model is nonconserving magnetization. The Hamiltonian of the system is diagonalized analytically.
View Article and Find Full Text PDFWe apply a laser and two nearly degenerate microwave fields upon an ensemble of nitrogen-vacancy centers in diamond and observe magnetic resonance structures with two-component, composite shapes of nested Lorentzians with different widths. One component of them undergoes regular power-broadening, whereas the linewidth of the other one becomes power-independent and undergoes field-induced stabilization. We show that the observed width stabilization is a general phenomenon that results from competition between coherent driving and non-conservation of populations that occur in open systems.
View Article and Find Full Text PDFJ Phys Condens Matter
April 2022
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, United States of America.
We investigate the spin-nonconserving relaxation channel of excitons by their couplings with phonons in two-dimensional transition metal dichalcogenides usingapproaches. Combining GW-Bethe-Salpeter equation method and density functional perturbation theory, we calculate the electron-phonon and exciton-phonon coupling matrix elements for the spin-flip scattering in monolayer WSe, and further analyze the microscopic mechanisms influencing these scattering strengths. We find that phonons could produce effective in-plane magnetic fields which flip spin of excitons, giving rise to relaxation channels complimentary to the spin-conserving relaxation.
View Article and Find Full Text PDFPhys Rev E
January 2022
Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540, USA.
The Fermi acceleration model describes how cosmic ray particles accelerate to great speeds by interacting with moving magnetic fields. We identify a variation of the model where light ions interact with a moving wall while undergoing pitch angle scattering through Coulomb collisions due to the presence of a heavier ionic species. The collisions introduce a stochastic component which adds complexity to the particle acceleration profile and sets it apart from collisionless Fermi acceleration models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!