A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Percolation versus depinning transition: The inherent role of damage hardening during quasibrittle failure. | LitMetric

The intermittent damage evolution preceding the failure of heterogeneous brittle solids is well described by scaling laws. In deciphering its origins, failure is routinely interpreted as a critical transition. However at odds with expectations of universality, a large scatter in the value of the scaling exponents is reported during acoustic emission experiments. Here we numerically examine the precursory damage activity to reconcile the experimental observations with critical phenomena framework. Along with the strength of disorder, we consider an additional parameter that describes the progressive damageability of material elements at mesoscopic scale. This hardening behavior encapsulates the microfracturing processes taking place at lower length scales. We find that damage hardening can not only delay the final failure but also affect the preceding damage accumulation. When hardening is low, the precursory activity is strongly influenced by the strength of the disorder and is reminiscent of damage percolation. On the contrary, for large hardening, long-range elastic interactions prevail over disorder, ensuring a rather homogeneous evolution of the damage field in the material. The power-law statistics of the damage bursts is robust to the strength of the disorder and is reminiscent of the collective avalanche dynamics of elastic interfaces near the depinning transition. The existence of these two distinct universality classes also manifests as different values of the scaling exponent characterizing the divergence of the precursor size on approaching failure. Our finding sheds new light on the connection between the level of quasibrittleness of materials and the statistical features of the failure precursors. Finally, it also provides a more complete description of the acoustic precursors and thus paves the way for quantitative techniques of damage monitoring of structures-in-service.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.110.035003DOI Listing

Publication Analysis

Top Keywords

strength disorder
12
damage
9
depinning transition
8
damage hardening
8
disorder reminiscent
8
failure
6
hardening
5
percolation versus
4
versus depinning
4
transition inherent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!