Interplay between endothelial glycocalyx layer and red blood cell in microvascular blood flow: A numerical study.

Phys Rev E

State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China.

Published: September 2024

AI Article Synopsis

  • * Our research uses numerical simulations to explore how EGL interacts with flowing red blood cells (RBCs) in microtubes, considering factors like shear rate and EGL structure.
  • * Findings show that as RBCs flow, they compress the EGL, which affects its height and the RBC shape, leading to changes in the space between RBCs and the wall of the tube, particularly in microtubes with diameters of 7 to 10 µm, highlighting the EGL's role in blood flow dynamics.

Article Abstract

The endothelial glycocalyx layer (EGL) plays a crucial role in regulating blood flow in microvessels. Experimental evidence suggests that there is greater blood flow resistance in vivo compared to in vitro, partially due to the presence of the EGL. However, the complex relationship between EGL deformation and blood cell behavior in shear flow and its quantification remains incompletely understood. To address this gap, we employ a particle-based numerical simulation technique to examine the interaction of the EGL with flowing red blood cells (RBCs) in microtubes. We examine changes in EGL deformation in response to variations in shear rate, EGL graft density, and contour height. Our results indicate that the alterations in EGL height are influenced by the mechanical properties of the EGL, flow conditions, and the RBC-EGL interaction. The flowing RBC compresses the EGL, causing a notable reduction in EGL height near the RBC flow. Additionally, we find that the presence of the EGL in the microtube results in increased RBC deformation and a wider gap between the RBC and tube wall due to spatial occupancy. The significant impact of the EGL on RBC flow is particularly evident in microtubes with diameters ranging from 7 to 10µm, a range consistent with notable differences in vascular flow resistance observed between in vivo and in vitro experiments. The simulation results shed insight on the dynamic interplay between RBC and the EGL in microvascular blood flow.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.110.034409DOI Listing

Publication Analysis

Top Keywords

blood flow
16
egl
13
flow
9
endothelial glycocalyx
8
glycocalyx layer
8
red blood
8
blood cell
8
microvascular blood
8
flow resistance
8
presence egl
8

Similar Publications

Background: Several epidemiological studies and intervention trials have demonstrated that grapes and blueberries, which are rich in flavanols, can lower the risk of cardiovascular disease. However, the mechanisms of action of these compounds remain unclear due to their low bioavailability.

Objective: This study aimed to characterize the sensory properties, blood flow velocity, and oxidative stress of a polyphenol rich grape and blueberry extract (PEGB) containing approximately 16% flavanols (11% monomers and 4% dimers).

View Article and Find Full Text PDF

Circulating T Cell Subsets in Type 1 Diabetes.

Cells

January 2025

Unidad de Investigación Médica en Inmunología, de la UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.

Type 1 diabetes (T1D) is a complex disease driven by the immune system attacking the insulin-producing beta cells in the pancreas. Understanding the role of different T cell subpopulations in the development and progression of T1D is crucial. By employing flow cytometry to compare the characteristics of T cells, we can pinpoint potential indicators of treatment response or therapeutic inefficacy.

View Article and Find Full Text PDF

Unravelling Secondary Brain Injury: Insights from a Human-Sized Porcine Model of Acute Subdural Haematoma.

Cells

December 2024

Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany.

Traumatic brain injury (TBI) remains one of the leading causes of death. Because of the individual nature of the trauma (brain, circumstances and forces), humans experience individual TBIs. This makes it difficult to generalise therapies.

View Article and Find Full Text PDF

Neurovascular coupling (NVC) refers to the process of local changes in cerebral blood flow (CBF) after neuronal activity, which ensures the timely and adequate supply of oxygen, glucose, and substrates to the active regions of the brain. Recent clinical imaging and experimental technology advancements have deepened our understanding of the cellular mechanisms underlying NVC. Pathological conditions such as stroke, subarachnoid hemorrhage, cerebral small vascular disease, and vascular cognitive impairment can disrupt NVC even before clinical symptoms appear.

View Article and Find Full Text PDF

Unlabelled: In a period globally known as long COVID, several post-acute infection sequelae and vaccination effects have been discussed.

Objectives: This study aimed to identify the effects of COVID-19 infection and vaccines on the menstrual cycle of adolescents attending higher education and to verify the association between personal health factors and changes in their menstrual cycle after contact with the virus SARS-CoV-2 via infection or via the vaccine.

Methods: A cross-sectional study was conducted using a questionnaire for data collection, applied online to Portuguese higher education adolescents aged between 18 and 24.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!