Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: This study aimed to evaluate the effectiveness of DeepLabv3+with Squeeze-and-Excitation (DeepLabv3+SE) architectures for segmenting the choroid in optical coherence tomography (OCT) images of patients with diabetic retinopathy.
Methods: A total of 300 B-scans were selected from 21 patients with mild to moderate diabetic retinopathy. Six DeepLabv3+SE variants, each utilizing a different pre-trained convolutional neural network (CNN) for feature extraction, were compared. Segmentation performance was assessed using the Jaccard index, Dice score (DSC), precision, recall, and F1-score. Binarization and Bland-Altman analysis were employed to evaluate the agreement between automated and manual measurements of choroidal area, luminal area (LA), and Choroidal Vascularity Index (CVI).
Results: DeepLabv3+SE with EfficientNetB0 achieved the highest segmentation performance, with a Jaccard index of 95.47, DSC of 98.29, precision of 98.80, recall of 97.41, and F1-score of 98.10 on the validation set. Bland-Altman analysis indicated good agreement between automated and manual measurements of LA and CVI.
Conclusions: DeepLabv3+SE with EfficientNetB0 demonstrates promise for accurate choroid segmentation in OCT images. This approach offers a potential solution for automated CVI calculation in diabetic retinopathy patients. Further evaluation of the proposed method on a larger and more diverse dataset can strengthen its generalizability and clinical applicability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488256 | PMC |
http://dx.doi.org/10.1186/s12880-024-01459-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!