Overcoming resistance to epidermal growth factor receptor tyrosine kinase inhibitors, including osimertinib, is urgent to improve lung cancer treatment outcomes. Extracellular vesicle (EV)-derived microRNAs (EV-miRNAs) play important roles in drug resistance and serve as promising biomarkers. In this study, we aimed to identify EV-miRNAs associated with osimertinib resistance and investigate their clinical relevance. The release of excess EVs was confirmed in the osimertinib-resistant lung adenocarcinoma cell line PC9OR. The exposure of PC9OR-derived EVs and EV-miRNAs to PC9 cells increased cell viability after osimertinib treatment. Microarray analysis revealed that miR-130a-3p was upregulated in EVs derived from PC9OR cells and another osimertinib-resistant cell line (H1975OR). Transfection with miR-130a-3p attenuated osimertinib-induced cytotoxicity and apoptosis in both PC9 and H1975 cells, whereas osimertinib resistance in PC9OR cells was reversed after miR-130a-3p inhibition. Bioinformatics analysis revealed that runt-related transcription factor 3 is a target gene of miR-130a-3p, and it induced osimertinib resistance in PC9 cells. Patients with lower baseline serum miR-130a-3p concentrations had longer progression-free survival. miR-130a-3p is a potential therapeutic target and a predictive biomarker of osimertinib resistance in adenocarcinomas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489462 | PMC |
http://dx.doi.org/10.1038/s41598-024-76196-1 | DOI Listing |
Exp Hematol Oncol
January 2025
Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Background: Osimertinib has emerged as a critical element in the treatment landscape following recent clinical trials. Further investigation into the mechanisms driving resistance to Osimertinib is necessary to address the restricted treatment options and survival advantages that are compromised by resistance in patients with EGFR-mutated lung adenocarcinoma (LUAD).
Methods: Spatial transcriptomic and proteomic analyses were utilized to investigate the mechanisms of Osimertinib resistance.
Cancers (Basel)
December 2024
Department of Chest Medicine, Taichung Veterans General Hospital, No. 1650, Sect. 4, Taiwan Boulevard, Taichung 407, Taiwan.
Background/objectives: Osimertinib is a standard sequential therapy for advanced and recurrent Epidermal Growth Factor Receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients with the T790M mutation, following treatment with first- or second-generation EGFR Tyrosine Kinase Inhibitors (TKIs). This study aims to investigate the differences in clinical outcomes between osimertinib as a 2nd-line treatment and as a ≥3rd-line treatment in this patient population.
Methods: Between September 2014 and March 2023, we enrolled advanced and recurrent T790M + NSCLC patients who had received osimertinib as sequential treatment for analysis.
J Chemother
January 2025
Department of Pulmonary Diseases, AZ Delta, Roeselare, Belgium.
J Thorac Oncol
January 2025
Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:
Introduction: Treatment options for patients with epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) with disease progression on/after osimertinib and platinum-based chemotherapy are limited.
Methods: CHRYSALIS-2 Cohort A evaluated amivantamab+lazertinib in patients with EGFR exon 19 deletion- or L858R-mutated NSCLC with disease progression on/after osimertinib and platinum-based chemotherapy. Primary endpoint was investigator-assessed objective response rate (ORR).
Theranostics
January 2025
School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!