Photon-magnon coupling, where electromagnetic waves interact with spin waves, and negative refraction, which bends the direction of electromagnetic waves unnaturally, constitute critical foundations and advancements in the realms of optics, spintronics, and quantum information technology. Here, we explore a magnetic-field-controlled, on-off switchable, non-reciprocal negative refractive index within a non-Hermitian photon-magnon hybrid system. By integrating an yttrium iron garnet film with an inverted split-ring resonator, we discover pronounced negative refractive index driven by the system's non-Hermitian properties. This phenomenon exhibits unique non-reciprocal behavior dependent on the signal's propagation direction. Our analytical model sheds light on the crucial interplay between coherent and dissipative coupling, significantly altering permittivity and permeability's imaginary components, crucial for negative refractive index's emergence. This work pioneers new avenues for employing negative refractive index in photon-magnon hybrid systems, signaling substantial advancements in quantum hybrid systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489656 | PMC |
http://dx.doi.org/10.1038/s41467-024-53328-9 | DOI Listing |
Sci Rep
December 2024
Department of Ophthalmology, Jinshan Hospital of Fudan University, 1508 Longhang Road, Jinshan District, Shanghai, China.
To observe the structural changes of retina and choroid in patients with different degrees of myopia. We recruited 219 subjects with different degrees of myopia for best corrected visual acuity, computer refraction, intraocular pressure, axial length (AL), optical coherence tomography (OCT) imaging, and other examinations. Central macular retinal thickness (CRT), subfoveal choroidal thickness (SFCT), nasal retinal thickness (NRT), temporal retinal thickness (TRT), nasal choroidal thickness (NCT) and temporal choroidal thickness (TCT) were measured by optical coherence tomography.
View Article and Find Full Text PDFIndian J Ophthalmol
December 2024
Department of Ophthalmology, Swiss Vision Eye Group, Istanbul, Turkey.
Objectives: To demonstrate corneal remodeling after corneal allograft intrastromal ring segment (CAIRS) with an anterior-segment optical coherence tomography (AS-OCT).
Design: A prospective observational single-center study.
Methods: This observational study included keratoconus patients who underwent CAIRS implantation into a stromal tunnel.
Indian J Ophthalmol
January 2025
Department of Ophthalmology, Yaan People's Hospital, Yaan City, Sichuan Province, China.
Objective: This study aimed to investigate the effect of axial elongation on anterior scleral thickness (AST) in myopia.
Methods: The convenience sampling method was used to select 122 patients without ocular or systemic diseases affecting ametropia in Ya'an People's Hospital between March 2020 and January 2022. According to the diopter and axial length (AL), the patients were divided into an emmetropia group (32 cases), a low-to-moderate myopia group (40 cases), and a high myopia group (40 cases).
Biosens Bioelectron
December 2024
College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, China.
A novel dual-parameter optical fiber biosensor based on surface plasmon resonance (SPR) for simultaneous measurement of urea and uric acid concentrations is proposed in this paper. Based on the principle of positive and negative electric combination, ZnO nanoparticles is selected as the matrix for immobilizing urease and uricase with selective recognition ability, which can also be used as a sensitizing material to increase the refractive index detection sensitivity of SPR by 22%. Then, Nafion ion exchange membrane was introduced to wrap the urea sensing area to avoid crosstalk caused by the overlap of adjacent sensing areas.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tübingen, Tübingen, Germany.
Purpose: Changes in choroidal thickness (ChT) are proposed to predict myopia development but evidence is mixed. We investigated time courses of choroidal responses, following different types of dynamic artificial stimulation in chicks with and without spectacle lenses, as well as changes in retinal dopamine metabolism and expression of candidate genes.
Methods: Chicks were kept in an arena surrounded by computer monitors presenting dynamic checkerboard fields of small, medium and large size.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!