Direct observation of space-charge-induced electric fields at oxide grain boundaries.

Nat Commun

Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16, Yayoi Bunkyo, Tokyo, 113-0032, Japan.

Published: October 2024

AI Article Synopsis

  • * Using advanced microscopy techniques, researchers directly observed electric field distribution across yttria-stabilized zirconia (YSZ) GBs, confirming the existence and variability of SCLs based on GB orientations and atomic structures.
  • * There is a strong correlation between the magnitude of SCLs and the amount of yttrium segregation at the GBs, shedding light on the relationship between SCLs, atomic structures, and impurity behaviors in ionic crystals.

Article Abstract

Space charge layers (SCLs) formed at grain boundaries (GBs) are considered to critically influence the properties of polycrystalline materials such as ion conductivities. Despite the extensive researches on this issue, the presence of GB SCLs and their relationship with GB orientations, atomic-scale structures and impurity/solute segregation behaviors remain controversial, primarily due to the difficulties in directly observing charge distribution at GBs. In this study, we directly observe electric field distribution across the well-defined yttria-stabilized zirconia (YSZ) GBs by tilt-scan averaged differential phase contrast scanning transmission electron microscopy. Our observation clearly reveals the existence of SCLs across the YSZ GBs with nanometer precision, which are significantly varied depending on the GB orientations and the resultant core atomic structures. Moreover, the magnitude of SCLs show a strong correlation with yttrium segregation amounts. This study provides critical insights into the complex interplay between SCLs, orientations, atomic structures and segregation of GBs in ionic crystals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489755PMC
http://dx.doi.org/10.1038/s41467-024-53014-wDOI Listing

Publication Analysis

Top Keywords

grain boundaries
8
ysz gbs
8
atomic structures
8
scls
5
gbs
5
direct observation
4
observation space-charge-induced
4
space-charge-induced electric
4
electric fields
4
fields oxide
4

Similar Publications

Genomes reveal pervasive distant hybridization in nature among cyprinid fishes.

Gigascience

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.

Background: Genomic data have unveiled a fascinating aspect of the evolutionary past, showing that the mingling of different species through hybridization has left its mark on the histories of numerous life forms. However, the relationship between hybridization events and the origins of cyprinid fishes remains unclear.

Results: In this study, we generated de novo assembled genomes of 8 cyprinid fishes and conducted phylogenetic analyses on 24 species.

View Article and Find Full Text PDF

The polycrystalline nature of perovskites, stemming from their facile solution-based fabrication, leads to a high density of grain boundaries (GBs) and point defects. However, the impact of GBs on perovskite performance remains uncertain, with contradictory statements found in the literature. We developed a machine learning force field, sampled GB structures on a nanosecond time scale, and performed nonadiabatic (NA) molecular dynamics simulations of charge carrier trapping and recombination in stoichiometric and doped GBs.

View Article and Find Full Text PDF

The concept of inert matrix fuel (IMF) has been proposed to utilize the energetic value of Pu and transmute minor actinides in nuclear reactors. In order to offset the initial reactivity of nuclear fuel, gadolinium (Gd) is employed as a burnable poison, owing to its high neutron absorption cross-section. To gain insights into the radiation stability and influence of grain boundaries on irradiation behaviour, 5 mol% Gd-doped ceria samples, sintered at varying temperatures, were subjected to irradiation using 400 Kr ions.

View Article and Find Full Text PDF

Hybrid additive manufacturing for Zn-Mg casting for biomedical application.

In Vitro Model

December 2024

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.

Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.

View Article and Find Full Text PDF

Thermoelectric (TE) devices recycle high-temperature waste-heat efficiently, but waste-heat below sub-250 °C remains uncaptured. As promoting full autonomy for the Internet of Things (IoT), we present a TE generator using multilayered pseudo--type GaN/TiN/GaN and -type TiO/TiN/TiO TE one-leg devices, where heterozygous of outer/inner layers demonstrates the functions of a colossal Seebeck coefficient ( = +15,000 μV K) with phonon-assist hopping, controlling by the porosity for reducing thermal conductivity (κ), a high electric conductivity (σ) with reducing κ by outer layers, and σ- coexistence over singular curve by the asymmetric electrode configuration. is elucidated hopping among inner grains and the space charge (SC) grain boundary (GB) of 100 μm regions within Debye length.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!