There is growing interest in interactions of microplastics (MPs) with other pollutants. However, there is limited understanding of the combined effects of MPs and silver nanoparticles (AgNPs) on nontarget soil organisms. This work aimed to examine the effects of exposure to various AgNPs' concentrations alone (0, 0.1, 1, 10, 100, 1000 mg kg, 50 nm) and in combination with polyvinyl chloride microplastics (PVC MPs, 80-250 μm) at 0.1% concentration for 28 days on reproduction, Ag accumulation, C/N ratio, and isotopic fractionation of the standard soil fauna collembolan Folsomia candida. Results showed that compared to the AgNPs exposure alone, the presence of MPs significantly reduced reproduction by 51.4% and markedly increased Ag content in collembolans by 87.7% at 1000 mg kg AgNPs, which evidenced a synergistic effect. Co-exposure to MPs and AgNPs resulted in a noticeable reduction in the C/N ratio in F. candida body tissues by 9.90% and 5.27% at 1 and 10 mg kg AgNPs, respectively, showing additive and synergistic effects. Additionally, this co-exposure altered stable isotope fractionation, with the highest increments of δN by 32.3% and inhibition of δC by 2.62%, demonstrating the turnover of nutrients shift in the collembolan tissues. Collectively, this study demonstrates that con-current exposure to environmentally relevant concentration of MPs and relatively high doses of AgNPs synergistically induces toxic effects on F. candida, leading to Ag accumulation and reproduction decline. These findings imply that MPs could alter collembolans' responses to AgNPs exposure, potentially enhancing the metal ions' bioavailability in soil environments and posing ecotoxicological threats to soil-dwelling organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143557 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!