Purpose: The understanding of how varying radiation beam parameter settings affect the induction and magnitude of the FLASH effect remains limited. We sought to systematically evaluate how the magnitude of radiation-induced gastrointestinal toxicity depends on the interplay between mean dose rate (MDR) and dose per pulse (DPP).
Methods And Materials: C57BL/6J mice received total abdominal irradiation (TAI, 11-14 Gy single fraction) through either conventional (CONV) irradiation (low-DPP and low MDR, CONV) or through various combinations of DPP and MDR up to ultra-high-dose-rate beam conditions. DPPs ranging from 1 to 6 Gy were evaluated, while the total dose and MDR (>100 Gy/s) were kept constant; the effects of MDR were evaluated for the range of 0.3 to 1440 Gy/s, while the total dose and DPP were kept constant. Radiation-induced gastrointestinal toxicity was quantified in nontumor-bearing mice through the regenerating crypt assay and survival assessment. Tumor response was evaluated through tumor growth delay.
Results: Within each tested total dose using a constant MDR (>100 Gy/s), increasing DPP led to an increase in sparing (an increase in the number of regenerating crypts), with a more prominent effect seen at 12- and 14-Gy TAI. Interestingly, at DPPs of >4 Gy, a similar level of crypt sparing was demonstrated irrespective of the MDR used (from 0.3 to 1440 Gy/s). At a fixed high-DPP of 4.7 Gy, survival was equivalently improved relative to CONV irrespective of MDR. However, at a lower DPP of 0.93 Gy, an MDR of 104 Gy/s produced a greater survival effect compared with 0.3 Gy/s. We also confirmed that high-DPP, regardless of MDR, produced the same magnitude of tumor growth delay relative to CONV using a clinically relevant melanoma mouse model.
Conclusions: This study demonstrates the strong influence that the beam parameter settings have on the magnitude of the FLASH effect. Both high-DPP and ultra-high-dose-rate appeared independently sufficient to produce FLASH sparing of gastrointestinal toxicity while isoeffective tumor response was maintained across all conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2024.10.009 | DOI Listing |
Strahlenther Onkol
January 2025
Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
Purpose: Our objective was to identify the dosimetric parameters and prostate volume that most accurately predict the incidence of acute and late gastrointestinal (GI) and genitourinary (GU) toxicity in prostate cancer stereotactic ablative radiotherapy (SABR) treatments.
Methods: We conducted a retrospective analysis of 122 patients who received SABR for prostate cancer at our clinic between March 2018 and September 2022 using a five-fraction SABR regimen. The existing plans of these patients were re-evaluated according to our institutional protocols (Hacettepe University [HU-1] and HU-2) as well as PACE‑B, RTOG 0938, and NRG GU005 dose-volume constraints.
Chin Med Sci J
November 2024
State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China.
Objectives: To investigate the predictive value of myocardial strain for cardiotoxicity associated with fluorouracil-based chemotherapies in gastrointestinal cancer patients.
Methods: Patients with diagnosis of gastrointestinal cancers, who were hospitalized for chemotherapy involving antimetabolic drugs, were eligible in this prospective study. Echocardiography was performed before and after each chemotherapy cycle during hospitalization until the completion of chemotherapy.
Amino Acids
January 2025
Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece.
Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity.
View Article and Find Full Text PDFLancet Oncol
January 2025
Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China. Electronic address:
Background: CMG901 is a novel first-in-class antibody-drug conjugate with a humanised anticlaudin 18.2 antibody linked to microtubule-disrupting agent monomethyl auristatin E. We aimed to assess the antitumour activity and safety of CMG901 in patients with advanced gastric or gastro-oesophageal junction cancer and other solid tumours.
View Article and Find Full Text PDFOncologist
December 2024
Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, People's Republic of China.
Background: Both novel anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugates (ADCs) and pertuzumab and trastuzumab (HP) combined with chemotherapy(C) regimens are the choice of treatment for HER2 positive metastatic breast cancer (MBC) after tyrosine kinase inhibitors (TKIs). Our team's previous research has shown significant therapeutic effects of novel anti-HER2 ADCs in patients with TKIs treatment failure. Unfortunately, there is currently no data available to compare novel anti-HER2 ADCs with HP combined with chemotherapy regimens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!