Synthetic fabrics, especially polyester, are a primary source of microplastic fibers (MFs), but there is limited data on their accumulation and dose related health impact in living organisms. This study examined the effects of ingested polyester microfibers (PE-MFs) on hematology, histopathology, and serum biochemistry in albino mice. Mice were given varying doses of PE-MFs (100, 200, 400 and 800 μg/d/mice) for a duration of thirty-five days and a notable decreases in certain hematological parameters such as RBCs, Hb, and platelets, and increases in MCV and MCH was noted at (p < 0.05) thereby indicating possible inflammatory response within the body resulting from ingestion of these MFs. Liver enzymes (ALT, AST, and alkaline phosphatase) and histopathological changes in the liver and gastrointestinal tract also exhibited significant variations, with higher levels seen in the group receiving the highest dose of PE-MFs (800 μg/d/mice). In summary, increased exposure to PE-MFs led to a dose-related impact and notable alterations in histopathological, hematological, and serum biomarkers in albino mice. This study highlights the potential hazards associated with dietary exposure to PE-MFs in mammals and emphasizes the need for further research in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.120175DOI Listing

Publication Analysis

Top Keywords

polyester microfibers
8
impact dietary
4
dietary exposure
4
exposure polyester
4
microfibers hematology
4
hematology serology
4
serology histology
4
histology mouse
4
mouse model
4
model synthetic
4

Similar Publications

Thermal and sound insulation play a vital role in today's world, and nonwoven composite structures including microfiber layers provide efficient solutions for addressing these demands. In this study, the sound and thermal insulation properties of nonwoven composite structures, including single-layer meltblown, multilayer meltblown, hydroentangled, and nanofiber nonwoven inner layers, were compared statistically by using Design Expert 13 software. The inner layer type and outer layer type of the composite structures were considered as independent variables, and thickness, bulk density, air permeability, sound absorption coefficient, and thermal resistance of composite structures were evaluated as dependent variables during statistical analyses.

View Article and Find Full Text PDF

Microplastics fibers shed from washing synthetic textiles are released directly into the waters and make up 35% of primary microplastics discharged to the aquatic environment. While filtration devices and regulations are in development, safe disposal methods remain absent. Herein, we investigate catalytic hydrothermal carbonization (HTC) as a means of integrating this waste (0.

View Article and Find Full Text PDF

3D-bioprinting is a promising technique to mimic the complex anatomy of natural tissues, as it comprises a precise and gentle way of placing bioinks containing cells and hydrogel. Although hydrogels expose an ideal growth environment due to their extracellular matrix (ECM)-like properties, high water amount and tissue like microstructure, they lack mechanical strength and possess a diffusion limit of a couple of hundred micrometers. Integration of electrospun fibers could hereby benefit in multiple ways, for instance by controlling mechanical characteristics, cell orientation, direction of diffusion and anisotropic swelling behavior.

View Article and Find Full Text PDF

Behavioral and molecular effects of micro and nanoplastics across three plastic types in fish: weathered microfibers induce a similar response to nanosized particles.

Front Toxicol

November 2024

Fisheries, Wildlife, and Conservation Sciences Department; Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, Newport, OR, United States.

Micro and nanoplastics (MNPs) are ubiquitous in the environment and have been detected in most ecosystems, including remote regions. The class of contaminants under the MNP umbrella is quite broad and encompasses variable polymer types, shapes, and sizes. Fibers are the most frequently detected in the environment, followed by fragments, but still represent only a small fraction of laboratory studies.

View Article and Find Full Text PDF

Microplastics in the digestive tract of an endangered cetacean of the Southwest Atlantic Ocean: The franciscana dolphin.

Mar Pollut Bull

January 2025

Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, CC1260, B7602AYL Mar del Plata, Argentina; Asociación Naturalista Geselina, Villa Gesell, Argentina.

Article Synopsis
  • - This study is the first to analyze the presence of anthropogenic microparticles in franciscana dolphins, the most endangered cetaceans in the Southwest Atlantic Ocean, using samples from ten female dolphins collected between 2013 and 2023.
  • - Analysis of the intestinal content and wall tissues revealed that all samples contained anthropogenic particles, primarily in the form of fibers, with various types of polymers like polyester and polypropylene identified through advanced spectroscopic techniques.
  • - The research indicated differences in the types and colors of microplastics found in various sections of the dolphin's intestines, highlighting the extent of microplastic absorption in these endangered animals.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!